Open Access
Subscription Access
Open Access
Subscription Access
Distribution of Prime Ideals Across Ideal Classes in the Class Groups
Subscribe/Renew Journal
In this article we investigate the distribution of prime ideals of residue degree bigger than one across the ideal classes in the class group of a number field L. A criterion for the class group of L being generated by the classes of prime ideals of residue degree f > 1 is provided. Further, some consequences of this study on the solvability of norm equations for L/ℚ and on the problem of finding annihilators for relative extensions are discussed.
User
Subscription
Login to verify subscription
Font Size
Information
- V. Acciaro, Solvability of norm equations over cyclic number fields of prime degree, Mathematics of Computation, 65 no. 216, (1996) 1663–1674.
- Y. Bilu, Catalan’s conjecture (after Mihailescu), Seminare Bourbaki (2002–2003).
- T. D. Browning and R. Newton, The proportion of failures of the Hasse norm principle, Mathematika, 62 no. 2, (2016) 337–347.
- S. Dasgupta, Stark’s conjectures, B. A. (with Honors) thesis, Harvard university (1999).
- C. Fieker, A. Jurk and M. Pohst, On solving relative norm equations in algebraic number fields, Mathematics of Computation, 66 no. 217, (1997) 399–410.
- D. A. Garbanati, An algorithm for finding an algebraic number whose norm is a given rational number, J. Reine Angew. Math., 316 (1980) 1–13.
- G. J. Janusz, Algebraic number fields, second edition, Graduate Studies in Mathematics, American Mathematical Society, Vol. 7 (1996),
- E. E. Kummer, Collected papers, Vol. I. Springer Verlag, Berlin 1975.
- S. Lang, Cyclotomic fields 1 and 2, 2nd ed., Grad. Texts in Math., Springer, New York, 123 (1990).
- S. Lang, Algebraic number theory, 2nd ed., Grad. Texts in Math., Springer, New York, 110 (1994).
- H. W. Lenstra Jr. and P. Stevenhagen, Primes of degree one and algebraic cases of Chebotarev’s Theorem, L’ Enseignement Mathematique, t., 37 (1991) 17–30.
- J. C. Miller, Class numbers of real cyclotomic fields of composite conductor, LMS J. Comput. Math., suppl. A, 17 (2014) 404–417.
- M. Rosen, Class groups in cyclic 𝓁-extensions: comments on a paper by G. Cornell, Proc. Amer. Math. Soc., 142 no. 1, (2014) 21–18.
- J. W. Sands, Galois groups of exponent two and the Brumer-Stark conjecture, J. Reine Angew. Math., 349 (1984) 129–135.
- R. Schoof, Catalan’s conjecture, Universitext, Springer (2008).
- John Tate, Brumer-Stark-Stickelberger, Seminaire de Theorie des Nombres de Bordeaux, 10 (1980–1981) 1–16.
- L. C. Washington, Introduction to Cyclotomic fields, Second Edition, Springer (1991).
Abstract Views: 258
PDF Views: 0