Open Access
Subscription Access
Open Access
Subscription Access
An Investigation of Portfolio Optimization using Modified NSGA-II Algorithm
Subscribe/Renew Journal
This study aims to utilize the optimization framework of Markowitz and Random Immigration Non-dominated Sorting Genetic Algorithm-II (RINSGA-II) to trace portfolio with extreme values, which are Pareto optimal. Using dataset from OR-library, this study tested the efficacy of the modified algorithm against NSGA-II. The results indicate that random immigration NSGA-II is efficient to trace the extreme values. The suggested optimization algorithm of random immigration NSGA-II replicates the efficient frontier of OR-library and gives better spread compared to NSGA-II. Finally, to our best of knowledge this is the first study to adopt random immigration NSGA-II to construct an optimized portfolio with additional constraints.
Keywords
Genetic Algorithm, Heuristics, NSGA-II, Portfolio Optimization, Random Immigration.
User
Subscription
Login to verify subscription
Font Size
Information
- Anagnostopoulos, K., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297.
- Arone, S., Loraschi, A., & Tettamanzi, A. (1993). A genetic approach to Portfolio selection. Journal on Neural and Mass-parallel Computing and Information Systems, 3, 597-604.
- Baykasoðlu, A., Yunusoglu, M. G., & Özsoydan, F. B. (2015). A GRASP based solution approach to solve cardinality constrained portfolio optimization problems. Computers & Industrial Engineering, 90, 339-351.
- Beasley, J. E. (2019). OR-library. Retrieved from http://people. brunel. ac. uk/~ mastjjb/jeb/info. html
- Branke, J., Scheckenbach, B., Stein, M., Deb, K., & Schmeck, H. (2009). Portfolio Optimization with an envelope-based multi-objective evolutionary algorithm. European Journal of Operational Research, 199, 684-693.
- Busetti, F. R. (2000). Metaheuristic approaches to realistic portfolio optimisation. MS Degree Dissertation, University of South Africa.
- Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers and Operations Research, 27(13), 1271-1302.
- Chang, T., Yang, S., & Chang, K. (2009). Portfolio Optimization problems in different risk Measures using Genetic Algorithm. Expert Systems with Applications, 36(7), 10529-10537.
- Chen, W. (2015). Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A, 429, 125-139.
- Chiam, S. C., Tan, K. C., & Mamum, A. A. (2008). Evolutionary Multi-Objective Portfolio Optimization in Practical Context. International Journal of Automation and Computing, 5(1), 67-80.
- Crama, Y., & Schyns, M. (2003). Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 150(3), 546-571.
- Deb, K. (2001). Multi-Objective Option Using Evolutionary Algorithms. John Wiley & Sons, Inc.
- Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
- Deng, G.-F., Lin, W.-T., & Lo, C.-C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Systems with Applications, 39(4), 4558-4566.
- Fernández, A., & Gómez, S. (2007). Portfolio selection using neural networks. Computers & Operations Research, 34, 1177-1191.
- Fieldsend, J. E., Matatko, J., & Peng, M. (2004). Cardinality constrained portfolio optimisation. In Y. H. Yang Z.R. (Ed.), Intelligent Data Engineering and Automated Learning – IDEAL 2004. IDEAL 2004. Lecture Notes in Computer Science. 3177, pp. 788-793. Berlin, Heidelberg: Springer.
- Gomez, M., Flores, C. X., & Osorio, M. A. (2006). Hybrid search for cardinality constrained portfolio optimization. Proceeding GECCO ’06 Proceedings of the 8th annual conference on Genetic and evolutionary computation, (pp. 1865-1866). Seattle, Washington, USA.
- Hadka, D. (2017). MOEA Framework. Retrieved from http://moeaframework.org.
- Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90-95.
- Kalayci, C. B., & Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization. Expert Systems With Applications, 85(1), 61-75.
- Li, J., & Xu, J. (2013). Multi-objective portfolio selection model with fuzzy random returns and a compromise approach-based genetic algorithm. Information Sciences, 220, 507-521.
- Liagkouras, K., & Metaxiotis, K. (2014). A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41(14), 6274-6290.
- Loraschi, A., Tettamanzi, A., Tomassini, M., & Verda, P. (1995). Distributed Genetic Algorithms with an Application to Portfolio Selection. In E. N. Albrecht (Ed.), Artificial Neural Networks and Genetic Algorithms (ICANNGA’95) (pp. 384387). Wien:Springer.
- Ma, X., Gao, Y., & Wang, B. (2012). Portfolio Optimization with Cardinality Constraints Based on Hybrid Differential Evolution. AASRI Procedia, 1, 311-317.
- Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77-91.
- Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125.
- Mishra, S. K., Panda, G., & Majhi, B. (2016). Prediction based mean-variance model for constrained portfolio assets selection using multiobjective evolutionary algorithms. Swarm and Evolutionary Computation, 28, 117-130.
- Moral-Escudero, R., Ruiz-Torrubiano, R., & Suarez, A. (2006). Selection of Optimal Investment Portfolios with Cardinality Constraints. IEEE International Conference on Evolutionary Computation, (pp. 2382-2388). Vancouver, BC.
- Qi, R., & Yen, G. G. (2017). Hybrid bi-objective portfolio optimization with preselection strategy. Information Sciences, 417, 401-419.
- Schaerf, A. (2002). Local search techniques for constrained portfolio selection problems. Computational Economics, 20, 177-190.
- Silva, A., Neves, R., & Horta, N. (2015). A hybrid approach to portfolio composition based on fundamental and technical indicators. Expert Systems with Applications, 42(4), 2036-2048.
- Skolpadungket, P., Dahal, K., & Harnpornchai, N. (2007). Portfolio optimization using multi-obj ective genetic algorithms. IEEE Congress on Evolutionary Computation, (pp. 516-523). Singapore.
- Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Application, 36(3), 5058-5063.
- Streichert, F., Ulmer, H., & Zell, A. (2004). Evaluating a Hybrid Encoding and Three Crossover Operators on the Constrained Portfolio Selection Problem. Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 1, 932-939. Portland, OR, USA.
- Streichert, F., Ulmer, H., & Zell, A. (2004a). Comparing Discrete and Continuous Genotypes on the Constrained Portfolio Selection Problem. In D. K. (Ed.), Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science (Vol. 3103). Berlin, Heidelberg: Springer.
- Tin´os, R., & Yang, S. (2007). Genetic Algorithms with Self-Organizing Behaviour in Dynamic Environments. In Studies in computational intelligence, 51, 105-127.
- Zheng, J., Wu, Q., & Song, W. (2007). An improved particle swarm algorithm for solving nonlinear constrained optimization problems. Third International Conference on Natural Computation (ICNC 2007), (pp. 112-117). Haikou.
Abstract Views: 201
PDF Views: 0