Open Access
Subscription Access
Theoretical Investications on Geometric and Electronic Structure, Bonding and Spectral Properties of Dimolybdaboranes (CpMo)2B5H8 X (X = H, OH, OC6H5)
Density Functional Theory calculations are used to address both the geometrical and electronic structural features, bonding and magnetic properties of the group 6 dimetallaboranes which includes, dimolybedaboranes of the type (CpMo)<sub>2</sub>(B<sub>5</sub>H<sub>9</sub>) (1), and its derivatives (CpMo)<sub>2</sub> (B<sub>4</sub> H<sub>8</sub> X) (X = OH (2), OC<sub>6</sub>H<sub>5</sub> (3)). Compound (CpMo)<sub>2</sub>B<sub>5</sub>H<sub>9</sub> (1) is experimentally known and compounds 2 and 3 are new molybdenum analogues. DFT (BP86/TZVP) computed metrical parameters and electronic and spectral properties are in good agreement with the experimental values of related clusters and suggest the stability and possible synthesis of new clusters (CpMo)<sub>2</sub>(B<sub>4</sub>H<sub>8</sub>OH) 2 and CpMo)<sub>2</sub> (B<sub>4</sub>H<sub>8</sub>OPh) 3.
Keywords
Metallaborane, Spectroscopy, DFT
User
Font Size
Information
- Fehlner TP, Halet J-F, Saillard J-Y. Molecular clusters. A bridge to solid-state chemistry, Cambridge University Press, New York; 2007. https://doi.org/10.1017/ CBO9780511628887. PMid:17319670
- Nishihara Y, Deck KJ, Shang M, Fehlner TP, Haggerty BS, Rheingold AL. Synthesis of cobaltaborane clusters from [Cp*CoCl]2 and monoboranes. New structures and mechanistic implications. Organometallics.1994; 13:4510– 22 https://doi.org/10.1021/om00023a062
- King RB. Cyclopentadienyl ruthenium, rhodium, and iridium vertices in metallaboranes: Geometry and chemical Bonding Inorganic Chemistry. 2004; 43:4241–7. https://doi.org/10.1021/ic030279v. PMid:15236536
- Fehlner TP. Systematic metallaborane chemistry. Organometallics. 2000; 19:2643–51. https://doi.org/10.1021/om000355r
- Fehlner TP. Systematic metallaborane chemistry. Organometallics. 2000; 19:2643–51. https://doi.org/10.1021/om000355r
- X. Lei, M. Shang, T. P. Fehlner. Search for a general route to metallaboranes via the reaction of monocyclopentadienyl metal chlorides with monoborane. synthesis and reactivity of the rhodaborane nido-1-Cl-2,3-{(η5 -C5Me5)Rh}2B3H6.
- Journal of the American Chemical Society. 1998; 120:2686– 7. https://doi.org/10.1021/ja974268a
- H. Yan, A. M. Beatty, T. P. Fehlner. Metallaborane reaction chemistry. nido-Dirhodapentaborane isomer structures and stabilities and utilization of dirhodaboranes as catalysts for alkyne cyclotrimerization. Organometallics. 2002; 21:5029–37. https://doi.org/10.1021/om0205694
- Lei X, Shang M, Fehlner TP. Chem. Eur. J., 2000, 62, 653-2664.
- Ghosh S, Noll BC, Fehlner TP. Expansion of iridaborane clusters by addition of monoborane. Novel metallaboranes and mechanistic detail. Dalton Transactions. 2008:371–8.
- https://doi.org/10.1039/B715040G. PMid:18411847
- Geetharani K, Bose SK, Pramanik G, Saha TK, Ramkumar V, Ghosh S. An efficient route to group 6 and 8 metallaborane compounds: Synthesis of arachno‐[Cp*Fe(CO)B3 H8] and closo‐[(Cp*M)2B5H9] (M = Mo, W). European Journal of Inorganic Chemistry. 2009:1483–7. https://doi.org/10.1002/ ejic.200801137
- Lei X, Shang M, Fehlner TP. Chemistry of dimetallaboranes derived from the reaction of [Cp*MCl2 ]2
- with monoboranes (M = Ru, Rh; Cp* = η5-C5 Me5). Journal of the American Chemical Society. 1999; 121:1275–87. https://doi.org/10.1021/ja982954j
- Weller AS, Shang M, Fehlner TP. Chem. Commun. 1998; 1787–8.
- Le Guennic B, Jiao H, Kahlal S, Saillard J-Y, Halet J-F, Ghosh S, Shang M, et al., Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms. Journal of the American Chemical Society. 2004; 126:3203– 17. https://doi.org/10.1021/ja039770b. PMid:15012150
- Ho J, Deck KJ, Nishihara Y, Shang M, Fehlner TP. J. Am. Chem. Soc. 1995; 117:10292–9.
- Aldridge S, Hashimoto H, Kawamura K, Shang M, Fehlner TP. Inorg. Chem., 1998, 37, 928-940.
- Bullick HJ, Grebenik PD, Green MLH, Hughes AK, Leach JB, McGowan PC. Synthesis of η-cyclopentadienylpolyborane derivatives of molybdenum and tungsten. Journal of the Chemical Society, Dalton Transactions. 1995:67–75. https://doi.org/10.1039/DT9950000067
- Aldridge S, Shang M, Fehlner TP. Synthesis of novel molybdaboranes from (η5-C5 R5)MoCln precursors (R = H, Me; n = 1, 2, 4) Journal of the American Chemical Society. 1998; 120:2586–98. https://doi.org/10.1021/ja973720n
- Sahoo S, Dhayal RS, Varghese B, Ghosh S. Unusual open eight-vertex oxamolybdaboranes: Structural characterizations of (η5-C5Me5Mo)2B5(μ3-OEt)H6R (R = Hand n-BuO). Organometallics. 2009; 28:1586–9. https://doi.org/10.1021/om801065r
- Bose SK, Geetharani K, Varghese B, Mobin SM, Ghosh S. Chem. Eur. J., 2008, 14, 9058-9064.
- Weller AS, Shang M, Fehlner TP. Synthesis of monoand ditungstaboranes from reaction of Cp*WCl4 and [Cp*WCl2]2 with BH3·thf or LiBH4 (Cp* = η5-C5 Me5). Control of reaction pathway by choice of monoboron reagent and oxidation state of metal center organometallics. 1999; 18:53–64. https://doi.org/10.1021/om980743h
- Bose SK, Ghosh S, Noll BC, Halet J-F, Saillard J-Y, Vega A. Organometallics. 2007; 26:5377–85.
- Ting C, Messerle L. Borohydride boron-hydrogen activation and dimerization by a doubly bonded, early-transitionmetal organodimetallic complex. Ditantalladiborane syntheses as models for dehydrodimerization of methane to ethane. Journal of the American Chemical Society. 1989; 111:3449–50. https://doi.org/10.1021/ja00191a063
- Aldridge S, Hashimoto H, Shang M, Fehlner TP. Cp*TaCl2 B4 H8: synthesis, crystal structure and spectroscopic characterization of an air-stable, electronically unsaturated, chiral tantalaborane. Journal of the Chemical Society, Chemical Communications. 1998:207–8. https://doi.org/10.1039/a706483g
- Geetharani K, Krishnamoorthy BS, Kahlal S, Mobin SM, Halet J-F, Ghosh S. Synthesis and characterization of hypoelectronic tantalaboranes: comparison of the geometric and electronic structures of [(Cp*TaX)2 B5 H11] (X = Cl, Br, and I). Inorganic Chemistry. 2012; 51:10176–84. https://doi.org/10.1021/ic300848f. PMid:22963332
- Krishnamoorthy BS, Thakur A, Chakrahari K, Bose S, Hamon P, Roisnel T, et al. Inorganic Chemistry.
- ; 51:10375–83. https://doi.org/10.1021/ic301571e. PMid:22985463
- Krishnamoorthy BS, Kahlal S, Ghosh S, Halet J-F. Electronic, geometrical, and thermochemical studies on group-14 element-diruthenaborane cluster compounds: a theoretical investigation. Theoretical Chemistry Accounts. 2013; 132:1356–66. https://doi.org/10.1007/s00214-0131356-6
- Krishnamoorthy BS, Kahlal S, Le Guennic B, Saillard J-Y, Ghosh S, Halet Sol J-F. Molecular transitionmetal boron compounds. Any interest? Solid State Sciences. 2012; 14:1617–23. https://doi.org/10.1016/j. solidstatesciences.2012.03.026
- Geetharani K, Bose SK, Sahoo S, Ghosh S. A Family of Heterometallic Cubane‐Type Clusters with an exo‐ Fe(CO)3 Fragment Anchored to the Cubane. Angewandte Chemie International Edition. 2011; 50:3908. https://doi.org/10.1002/anie.201008101. PMid:21425424
- Bose SK, Geetharani K, Ghosh S. C–H activation of arenes and heteroarenes by early transition metallaborane, [(Cp*Ta)2B5H11] (Cp* = η5-C5Me5). Chemical Communications. 2011; 47:11996. https://doi.org/10.1039/c1cc15394c. PMid:21975826
- Campagna S, Giannetto A, Serroni S, Denti G, Micali N. Journal of the American Chemical Society. 1995; 1175:1754. https://doi.org/10.1021/ja00111a012
- Neese F. The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2012; 2:73–8. https://doi.org/10.1002/wcms.81
- Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics. 1980; 58:1200–11. https://doi.org/10.1139/p80-159
- Becke AD. J. Chem. Phys. 1986, 84, 4524-4529. Becke, A. D.; Phys. Rev. A, 1986 38, 3098-3100. Perdew, J. P.; Phys. Rev. B, 1986, 33, 8822-8824. https://doi.org/10.1103/ PhysRevB.33.8822 PMid:9938299
- Chemcraft - graphical software for visualization of quantum chemistry computations [Internet]. Available from: https://www.chemcraftprog.com
Abstract Views: 437
PDF Views: 206