The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The oblong numbers are in the form n(n+1), where n = 1,2, . . . . i.e., the oblong numbers are 2, 6, 12, . . . . If the vertices of the given graph G are labeled with oblong numbers and the edges of the graph are labeled with mean of the labels at the end vertices then G is said to have Oblong Mean Prime Labeling (OMPL). Similarly, if the vertices of G are labeled with oblong numbers and the edges of the graphs are labeled with mean of the absolute difference of the labels at the end vertices then G is said to have Oblong Difference Mean Prime Labeling (ODMPL). In this paper, the Oblong Mean Prime Labeling and Oblong Difference Mean Prime Labeling of Complete Graphs (CGs) Kn, n≥3 and Complete Multipartite Graphs (CMGs), K n n n n i 1 2 t 1 , , , , where 1i t ≤ ≤ have been investigated and obtained the results for such graphs.

Keywords

Complete Graphs (CGs) and Complete Multipartite Graphs (CMGs), Oblong Difference Mean Prime Labeling(ODMPL), Oblong Mean Prime Labeling (OMPL)
User
Notifications
Font Size