Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Neuroprotective Effect of Vitamin E Supplementation in Wistar Rat Treated with Acrylamide


Affiliations
  • Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Department of Veterinary Pathology, Nagpur, India
     

   Subscribe/Renew Journal


Male wistar rats (weighting 160-180 g) were divided into six groups of six animals per group. Groups A and F served as control. Groups B, C, D, and E received acrylamide at 20 mg/kg body weight for 28 days and groups C and E received additionally vitamin E (50 IU/kg body weight) for 1 to 28 days and 29 to 42 days of experiment, respectively. The animals from groups A, B, and C were sacrificed on day 28 of experiment and from groups D, E, and F on day 42 of experiment, respectively. The FOB (Functional Observational Battery) and histopathological changes were investigated at the end of 4th week and 6th week. FOB at the end of 4th week, of rats given acrylamide alone, or in combination with vitamin E, revealed a significant change in CNS, neuromuscular, and autonomic domains. A marked decrease in grip strength was recorded. A significant increase in foot splay, reduction in width and angle of sequential stride was noticed. Degenerative changes, necrosis, congestion, and kupffer cell proliferation in liver while vacuolar degenerative changes in tubular epithelium, coagulative necrosis, and hemorrhages in kidney were constant findings in acrylamide intoxicated rats. Neuronal degeneration, severe gliosis, congestion were found in brain. Spinal cord revealed demyelination. Acute microscopic softening of lumbar cord, bilateral necrosis with malacia and liquefaction of white matter, and loss of myelin from grey matter were seen. In the recovery period, vitamin E-treated rats revealed improvement in remyelination of spinal cord. In brain mild gliosis was seen. Thus, it appears that vitamin E is not able to protect them from acrylamide toxicity during active feeding, but after cessation of acrylamide feeding treatment with vitamin E revealed faster recovery as compared to the non-treated group.

Keywords

Acrylamide toxicity, functional observational battery, neurotoxicity, protective effect of vitamin E
User
Subscription Login to verify subscription
Notifications
Font Size

Abstract Views: 200

PDF Views: 0




  • Neuroprotective Effect of Vitamin E Supplementation in Wistar Rat Treated with Acrylamide

Abstract Views: 200  |  PDF Views: 0

Authors

Nitin Kurkure
, India
Vandana Hedaoo
, India

Abstract


Male wistar rats (weighting 160-180 g) were divided into six groups of six animals per group. Groups A and F served as control. Groups B, C, D, and E received acrylamide at 20 mg/kg body weight for 28 days and groups C and E received additionally vitamin E (50 IU/kg body weight) for 1 to 28 days and 29 to 42 days of experiment, respectively. The animals from groups A, B, and C were sacrificed on day 28 of experiment and from groups D, E, and F on day 42 of experiment, respectively. The FOB (Functional Observational Battery) and histopathological changes were investigated at the end of 4th week and 6th week. FOB at the end of 4th week, of rats given acrylamide alone, or in combination with vitamin E, revealed a significant change in CNS, neuromuscular, and autonomic domains. A marked decrease in grip strength was recorded. A significant increase in foot splay, reduction in width and angle of sequential stride was noticed. Degenerative changes, necrosis, congestion, and kupffer cell proliferation in liver while vacuolar degenerative changes in tubular epithelium, coagulative necrosis, and hemorrhages in kidney were constant findings in acrylamide intoxicated rats. Neuronal degeneration, severe gliosis, congestion were found in brain. Spinal cord revealed demyelination. Acute microscopic softening of lumbar cord, bilateral necrosis with malacia and liquefaction of white matter, and loss of myelin from grey matter were seen. In the recovery period, vitamin E-treated rats revealed improvement in remyelination of spinal cord. In brain mild gliosis was seen. Thus, it appears that vitamin E is not able to protect them from acrylamide toxicity during active feeding, but after cessation of acrylamide feeding treatment with vitamin E revealed faster recovery as compared to the non-treated group.

Keywords


Acrylamide toxicity, functional observational battery, neurotoxicity, protective effect of vitamin E