Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Mitigation Of Toxic Effects Of 2 Naphthalene Sulfonate After Its Treatment With Microbial Consortia


Affiliations
1 Cytogenetics Laboratory, Department of Zoology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
2 Department of Microbiology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
     

   Subscribe/Renew Journal


Present study aimed to treat 2 Napthalene Sulfonate (2NS), a dye intermediate with microbial consortia and assess its potential toxicological impact before and after treatment on the integrity of Deoxyribo-Nucleic Acid (DNA) in blood cells of Channa punctatus. Symbolic elevation in DNA damage with untreated 2NS administered fishes was observed as revealed by comet assay and micronucleus test. However, 2NS after being degraded using mixed bacterial population showed significant reduction in toxicological effects of 2NS. Thus, this study not only illustrated the adverse impact of such toxic contaminant of industrial waste but also suggested a highly efficient and eco-friendly way to remove the harmful xenobiotics from the environment which may help to reduce the exposure of aquatic fauna and flora to such lethal toxicants.

Keywords

2 Napthalene Sulfonate (2NS), Biodegradation, Genotoxicity.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Muthu, SS. Introduction. In: Muthu SS, editor. Sustainability in the Textile Industry. Singapore: Springer Singapore; 2017; p. 1-8. https://doi.org/10.1007/978-981-10-2639-3_1.
  • Nigam P, Banat IM, Singh D, Marchant R. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem. 1996; 31(5):435-442. https://doi.org/10.1016/0032-9592(95)00085-2.
  • Van Duuren BL. Carcinogenicity of hair dye components. J Environ Pathol Toxicol [Internet]. 1980; 3(4 Spec No):237-251.
  • Platzek T, Lang C, Grohmann G, Gi U-S, Baltes W. Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum Exp Toxicol. 1999; 18(9):552-559. https://doi. org/10.1191/096032799678845061. PMid:10523869.
  • Linder O. Ullmann’s Encyclopedia of Industrial Chemistry. 5th ed. VCH, Weinheim; 1985; p. 507.
  • Hamann E, Stuyfzand PJ, Greskowiak J, Timmer H, Massmann G. The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci Total Environ. 2016; 545-546:629-640. https://doi.org/10.1016/j.scitotenv.2015.12.057. PMid:26766391.
  • Kameya T, Murayama T, Urano K, Kitano M. Biodegradation ranks of priority organic compounds under anaerobic conditions. Sci Total Environ. 1995; 170(1-2):43-51. https://doi.org/10.1016/0048- 9697(95)04528-9.
  • Pan B, Zhang W, Pan B, Qiu H, Zhang Q, Zhang Q, et al. Efficient removal of aromatic sulfonates from wastewater by a recyclable polymer: 2-Naphthalene sulfonate as a representative pollutant. Environ Sci Technol. 2008; 42(19):7411-7416. https://doi.org/10.1021/es801370n. PMid:18939579.
  • APHA, AWWA, WPCF. Standard methods for the examination of water and wastewater. 20th ed. New York: American Public Health Association, American Water Works Association, Water Environment Federation; 1998.
  • Mehra S, Chadha P. Bioaccumulation and toxicity of 2-naphthalene sulfonate: An intermediate compound used in textile industry. Toxicol Res (Camb). 2020; 9(2):127-136. https://doi.org/10.1093/toxres/tfaa008. PMid:32440344 PMCid:PMC7233320. 11. Ahuja YR, Saran R. Alkaline single cell gel electropho resis assay. J Cytol Genet. 1999 Jan 1; 34:57-62.
  • Vasquez MZ. Combining the in vivo comet and micronucleus assays: A practical approach to genotox icity testing and data interpretation. Mutagenesis. 2010; 25(2):187-199. https://doi.org/10.1093/mutage/gep060. PMid:19969526 PMCid:PMC2825345.
  • Galindo TPS, Rosario IR, Da Silva EM. Micronucleus test in frillfin goby Bathygobius soporator (Valenciennes, 1873) from tide pools of Salvador city (Brazil). Brazilian J Aquat Sci Technol. 2014; 18(1):19. https://doi.org/10.14210/bjast.v18n1.p19-24.
  • Bhatnagar A, Yadav AS, Cheema N. Genotoxic effects of chlorpyrifos in freshwater fish Cirrhinus mrigala using micronucleus assay. Adv Biol. 2016; 2016:1-6. https://doi.org/10.1155/2016/9276963.
  • Anitha B, Chandra N, Gopinath P., Durairaj G. Genotoxicity evaluation of heat shock in gold fish (Carassius auratus). Mutat Res Toxicol Environ Mutagen. 2000; 469(1):1-8. https://doi.org/10.1016/S1383-5718(00)00029-2.
  • Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Srivastava SK. Mutagenic and genotoxic effects of carbosulfan in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem Toxicol. 2010; 48(1):202-208. https://doi.org/10.1016/j.fct.2009.09.041. PMid:19818828.
  • Osman AGM, Abuel-Fadl KY, Kloas W. In situ evaluation of the genotoxic potential of the river Nile: II. Detection of DNA strand-breakage and apoptosis in Oreochromis niloticus niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822). Mutat Res - Genet Toxicol Environ Mutagen. 2012; 747(1):14-21. https://doi.org/10.1016/j.mrgentox.2012.02.013. PMid:22525358.
  • Alink GM, Quik JTK, Penders EJM, Spenkelink A, Rotteveel SGP, Maas JL, et al. Genotoxic effects in the Eastern mudminnow (Umbra pygmaea L.) after exposure to Rhine water, as assessed by use of the SCE and Comet assays: A comparison between 1978 and 2005. Mutat Res - Genet Toxicol Environ Mutagen. 2007; 631(2):93-100. https://doi.org/10.1016/j.mrgentox.2007.03.011. PMid:17561437.
  • Pereira S, Camilleri V, Floriani M, Cavalie I, Garnier-Laplace J, Adam-Guillermin C. Genotoxicity of uranium contamination in embryonic zebrafish cells. Aquat Toxicol. 2012; 109:11-16. https://doi.org/10.1016/j.aquatox.2011.11.011. PMid:22204984.
  • Cavalcante DGSM, Martinez CBR, Sofia SH. Genotoxic effects of Roundup on the fish Prochilodus lineatus. Mutat Res Toxicol Environ Mutagen. 2008; 655(1-2):41-46.https://doi.org/10.1016/j.mrgentox.2008.06.010. PMid:18638566.
  • Rybakovas A, Barsiene J, Lang T. Environmental genotoxicity and cytotoxicity in the offshore zones of the Baltic and the North Seas. Mar Environ Res. 2009; 68(5):246-256.https://doi.org/10.1016/j.marenvres.2009.06.014. PMid:19616842.
  • Barsiene J, Andreikenaite L. Induction of micronuclei and other nuclear abnormalities in blue mussels exposed to crude oil from the North Sea. EKOLOGIJA. 2007; 53(3):9-15.
  • Osman AGM, Abd El Reheem A-E-BM, Moustafa MA, Mahmoud UM, Abuel-Fadl KY, Kloas W. In situ evaluation of the genotoxic potential of the river Nile: I. Micronucleus and nuclear lesion tests of erythrocytes of Oreochromis niloticus niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822). Toxicol Environ Chem. 2011; 93(5):1002-1017. https://doi.org/10.1080/02772248.2011.564496.
  • Ergene S, Cavas T, Celik A, Koleli N, Kaya F, Karahan A. Monitoring of nuclear abnormalities in peripheral erythrocytes of three fish species from the Goksu Delta (Turkey): Genotoxic damage in relation to water pollution. Ecotoxicology. 2007; 16(4):385-391. https://doi.org/10.1007/s10646-007-0142-4. PMid:17380383.
  • Fernandes FH, Umbuzeiro G de A, Salvadori DMF. Genotoxicity of textile dye C.I. Disperse Blue 291 in mouse bone marrow. Mutat Res - Genet Toxicol Environ Mutagen. 2019; 837:48-51. https://doi.org/10.1016/j.mrgentox.2018.10.003. PMid:30595209.
  • Sharma M, Chadha P. Induction of genotoxicity after subchronic treatment with 4-nonylphenol in blood cells from gill and kidney and restoration of DNA integrity after recovery by Channa punctatus. J Appl Nat Sci. 2019; 11(2):478-485. https://doi.org/10.31018/jans.v11i2.2099.
  • Vazquez-Duhalt R, Marquez-Rocha F, Ponce E, Licea AF, Viana MT. Nonylphenol, an integrated vision of a pollutant. Appl Ecol Environ Res. 2005; 4(1):1-25. https://doi.org/10.15666/aeer/0401_001025.
  • Woo S, Kim S, Yum S, Yim UH, Lee TK. Comet assay for the detection of genotoxicity in blood cells of flounder (Paralichthys olivaceus) exposed to sediments and polycyclic aromatic hydrocarbons. Mar Pollut Bull. 2006; 52(12):1768-1775. https://doi.org/10.1016/j.marpolbul.2006.08.027.PMid:17010996.
  • Naidu R. Recent advances in contaminated site remediation. Water Air Soil Pollut. 2013; 224(12):1-11. https://doi.org/10.1007/s11270-013-1723-x, https://doi.org/10.1007/s11270-013-1705-z.
  • Fuentes S, Mendez V, Aguila P, Seeger M. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Vol. 98, Applied Microbiology and Biotechnology. Springer Verlag, 2014; p. 4781-4794. https://doi.org/10.1007/s00253-014-5684-9. PMid:24691868.
  • Choi EJ, Jin HM, Lee SH, Math RK, Madsen EL, Jeon CO. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol. 2013; 79(2):663-671. https://doi.org/10.1128/AEM.02809-12. PMid:23160122 PMCid:PMC3553784.
  • Tyagi M, da Fonseca MMR, de Carvalho CCCR. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Vol. 22, Biodegradation, 2011; p. 231-241. https://doi.org/10.1007/s10532-010-9394-4. PMid:20680666.
  • Brilon C, Beckmann W, Knackmuss H-J. Catabolism of Naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol. 1981; 42(1):44-55. https://doi.org/10.1128/aem.42.1.44-55.1981. PMid:16345814 PMCid:PMC243959.
  • Sharma, S., Singh, P., Chadha, P. et al. Toxicity assessment of chlorpyrifos on different organs of rat: exploitation of microbial-based enzymatic system for neutralization. Environ Sci Pollut Res. 2019; 26:29649-29659. https://doi.org/10.1007/s11356-019-06140-8. PMid:31401803.
  • Sharma, S., Singh, P. B., Chadha, P., Saini, H. S. Chlorpyrifos pollution: Its effect on brain acetylcholinesterase activity in rat and treatment of polluted soil by indigenous Pseudomonas sp. Environ Sci Pollut Res. 2017; 24(1):381-387. https://doi.org/10.1007/s11356-016-7799-2. PMid:27722883.

Abstract Views: 191

PDF Views: 0




  • Mitigation Of Toxic Effects Of 2 Naphthalene Sulfonate After Its Treatment With Microbial Consortia

Abstract Views: 191  |  PDF Views: 0

Authors

Sukanya Mehra
Cytogenetics Laboratory, Department of Zoology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
Prince Dhammi
Department of Microbiology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
Pooja Chadha
Cytogenetics Laboratory, Department of Zoology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India
Harvinder Singh Saini
Department of Microbiology, Guru Nanak Dev University, Amritsar – 143005, Punjab, India

Abstract


Present study aimed to treat 2 Napthalene Sulfonate (2NS), a dye intermediate with microbial consortia and assess its potential toxicological impact before and after treatment on the integrity of Deoxyribo-Nucleic Acid (DNA) in blood cells of Channa punctatus. Symbolic elevation in DNA damage with untreated 2NS administered fishes was observed as revealed by comet assay and micronucleus test. However, 2NS after being degraded using mixed bacterial population showed significant reduction in toxicological effects of 2NS. Thus, this study not only illustrated the adverse impact of such toxic contaminant of industrial waste but also suggested a highly efficient and eco-friendly way to remove the harmful xenobiotics from the environment which may help to reduce the exposure of aquatic fauna and flora to such lethal toxicants.

Keywords


2 Napthalene Sulfonate (2NS), Biodegradation, Genotoxicity.

References





DOI: https://doi.org/10.18311/ti%2F2022%2Fv29i2%2F28165