Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Bio-Antioxidants Protect the Buffalo Bone Marrow Derived Mesenchymal Stem Cells against Oxidative Stress Induced During Freeze-Thaw Cycle


Affiliations
1 Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India
2 Department of Veterinary Pharmacology and Toxicology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India
3 Department of Veterinary Surgery and Radiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India
     

   Subscribe/Renew Journal


The present investigation was planned to evaluate the effect of curcumin (CUR) and resveratrol (RES) on oxidative stress indicators (LPO, O2- radical, ROS and TPC), antioxidant status (GSH, GPx, SOD, CAT and GST) and cytotoxicity markers (ALP, LDH, GGT and CK-MB) in mesenchymal stem cells (MSCs) derived from buffalo bone marrow during the freeze-thaw cycle of one month. MSCs were isolated and cultured in high glucose DMEM supplemented with 15% FBS. MSCs were found to be positive for alkaline phosphatase (AP) activity and stem cell markers (CD73 and OCT4). Results revealed a significant reduction in (p≤0.05) in oxidative stress parameters and cytotoxicity markers, while, the levels of cellular antioxidants were found to be significantly increased (p≤0.05) in CUR/RES alone and in combination groups as compared to the control group. In conclusion, the addition of bioantioxidants in the cryopreservation medium has improved the post-thaw cell recovery through suppression of oxidative stress-induced during the freeze-thaw cycle.

Keywords

Antioxidants, Buffalo, Curcumin, Mesenchymal Stem Cells, Oxidative Stress, Resveratrol.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016. https://doi.org/10.1155/2016/6940283 PMid:27516776 PMCid:PMC4969512.
  • Markoski MM. Advances in the use of stem cells in veterinary medicine: From basic research to clinical practice. Scientifica (Cairo). 2016. https://doi. org/10.1155/2016/4516920 PMid:27379197 PMCid:PM C4917716.
  • Das J, Nath I, Das RK, Poutary P, Behra SS. Autologous stem cell therapy to treat chronic ulcer in heifer - A case study. Vet World. 2012; 12:771-4. https://doi.org/10.5455 /vetworld.2012.771-774.
  • Doan CC, Truong NH, Vu NB, Nguyen TT, Nguyen HM, Nguyen KG, Do S, Phan NK, Pham PV. Isolation, culture and cryopreservation of human bone marrow derived mesenchymal stem cells. Int J Plant, Anim Environ Sci. 2012; 2(2):358-67.
  • Mitchell A, Rivas KA, Smith R, Watts AE. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5%. Stem Cell Res Ther. 2015; 6(1):231-43. https://doi.org/10.1186/s13287-015-0230-y PMid:26611913 PMCid:PMC4661990.
  • Shivakumar SB, Bharti D, Jang S, Hwang S, Park J, Shin J, Byun J, Park B, Rho G. Cryopreservation of human wharton’s jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants: A comparative study. Int J Stem Cells. 2015; 8(2):155-69. https://doi.org/10.15283/ ijsc.2015.8.2.155 PMid:26634064 PMCid:PMC4651280.
  • Yong KW, Murphy BP, Xu F, Bakar WA, Abas W, Choi JR, Omar SZ, Azmi AD N, Chua KH, Safwan WKZW. Phenotypic and functional characterization of longterm cryopreserved human adipose-derived stem cells. Sci Rep. 2015; 5. https://doi.org/10.1038/srep09596 PMid:25872464 PMCid:PMC4397835.
  • Lopez M, Bollag RJ, Jack CY, Isales CM, Eroglu A. Chemically defined and xeno-free cryopreservation of human adipose-derived stem cells. PloS One. 2016; (3). https://doi.org/10.1371/journal.pone.0152161 PMid:27010403 PMCid:PMC4806986.
  • Makashovo OE, Babijchuk LO, Zubova OL, Zubov PM. Optimization of cryopreservation technique for human cord blood nucleated cells using combination of cryoprotectant DMSO and antioxidant N-acetyl-Lcysteine. Probl Cryobiol Cryomed. 2016; 26(4):295-307. https://doi.org/10.15407/cryo26.04.295.
  • Devi P, Sharma M, Singh D, Lonare MK, Udehiya R. Viability and expression pattern of cryopreserved mesenchymal stem cells derived from buffalo bone marrow. Rumin Sci. 2017; 6(1):7-12.
  • Aliakbari F, Gilani MAS, Amidi F, Baazm M, Korouji M, Izadyar F, Abbasi M. Improving the efficacy of cryopreservation of spermatogonia stem cells by antioxidant supplements. Cell Reprogram. 2016; 18(2):87-95. https://doi.org/10.1089/cell.2015.0067 PM id:27055629.
  • Ha SJ, Kim BG, Lee YA, Kim YH, Kim BJ, Jung SE, Ryu BY. Effect of antioxidants and apoptosis inhibitors on cryopreservation of murine germ cells enriched for spermatogonial stem cells. PloS One. 2016; 11(8). https://doi.org/10.1371/journal.pone.0161372 PMid:27548381 PMCid:PMC4993461.
  • Singh AK, Jha A, Bit A, Kiassov AP, Rizvanov A, Ojha A, Bhoi P, Patra PK, Kumar A, Bissoyi A. Selaginella bryopteris aqueous extract improves stability and function of cryopreserved human mesenchymal stem cells. Oxid Med Cell Longev. 2017. https://doi.org/10. 1155/2017/8530656 PMid:28811868 PMCid:PMC5546 052.
  • Tian Y, Li X, Xie H, Wang X, Xie Y, Chen C, Chen D. Protective mechanism of the antioxidant baicalein toward hydroxyl radical-treated bone marrow-derived mesenchymal stem cells. Molecules. 2018; 23(1). https:// doi.org/10.3390/molecules23010223 PMid:29361712 P MCid:PMC6017293.
  • Amidi F, Rashidi Z, KhosravizadehZ, Khodamoradi K, Talebi A, Navid S, Abbasi M. Antioxidant effects of quercetin in freeze-thawing process of mouse spermatogonial stem cells. Asian Pac J Reprod. 2019; 8(1):7-12. https://doi.org/10.4103/2305-0500.250417.
  • Gade NE, Pratheesh MD, Nath A, Dubey PK, Amarpal, Sharma B, Saikumar G, Sharma GT. Molecular and cellular characterization of buffalo bone marrow-derived mesenchymal stem cells. Reprod Domest Anim. 2012; 48(3):10-15. https://doi. org/10.1111/j.1439-0531.2012.02156.x PMid:23679988.
  • Peltz L, Gomez J, Marquez M, Alencastro F, Atashpanjeh N, Quang T, Zhao Y. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS One. 2012; 7(5). https:// doi.org/10.1371/journal.pone.0037162 PMid:22615926 PMCid:PMC3353901.
  • Wang N, Wang F, Gao Y, Yin P, Pan C, Liu W, Wang J. Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis. J Pharmacol Sci. 2016; 132(3):192-200. https://doi.org/10.1016/j.jphs.2016.10.005 PMid:27840063.
  • Stocks J, Dormandy TL. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol. 1971; 20:95-111. https://doi.org/10.1111/j.1365-2141.19 71.tb00790.x PMid:5540044.
  • Choi HS, Kim JW, Cha YN, Kim C. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoassay Immunochem. 2006; 27(1):31-44. https:// doi.org/10.1080/15321810500403722 PMid:16450867.
  • Aranda A, Sequedo L, Tolosa L, Quintas G, Burello E, Castell JV, Gombau L. Dichloro-dihydro-fluoroscein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticles-treated cells. Toxicol In Vitro. 2013; 27(2):954-63. https://doi. org/10.1016/j.tiv.2013.01.016 PMid:23357416.
  • Lowry H, Rosebrough NJ, Farr A, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chemis. 1951; 1:265-75. https://doi.org/10.1016/S0021- 9258(19)52451-6.
  • Madesh M, Balasubramanian KA. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys. 1998; 35:184-8.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chemis. 1974; 249(22):7130-9. https://doi.org/10.1016/S0021-9258(19)42083-8.
  • Hafeman DG, Sunde RA, Hoekstra WG. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr. 1974; 104:580-7. https:// doi.org/10.1093/jn/104.5.580 PMid:4823943.
  • Aebi H. Catalase in vitro, Methods Enzymol. 1984; 105:121-6. https://doi.org/10.1016/S0076-6879(84)05016-3.
  • Beutler E, Kelly BM. The effect of sodium nitrite on red cell GSH. Experientia. 1963; 19:96-7. https://doi. org/10.1007/BF02148042 PMid:13967892.
  • Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology. 2002; 27:181-2. https://doi.org/10 .1016/S0300-483X(02)00448-1.
  • Ortega Ferrusola C, Gonzalez FL, Morrell JM, Salazar SC, Macas GB, Rodrıguez MH. Tapia JA, Pena FJ. Lipid peroxidation, assessed with BODIPY-C11, increases after cryopreservation of stallion spermatozoa, is stallion-dependent and is related to apoptotic-like changes. Reproduction. 2009; 138:55-63. https://doi. org/10.1530/REP-08-0484 PMid:19380427.
  • Martin M, Ortega Ferrusola P, Vizuete C, Plaza Da’vila GM, Rodriguez Martinez H, Pena FJ. Depletion of intracellular thiols and increased production of 4-hydroxynonenal that occur during cryopreservation of stallion spermatozoa lead to caspase activation, loss of motility, and cell death. Biol Reprod. 2015; 93(6):143, 1-11. https://doi.org/10.1095/biolreprod.115.132878 PMid:26536905.
  • Puts CF, Berendsen TA, Bruinsma BG, Ozer S, Luitje M, Usta OB. Polyethylene glycol protects primary hepatocytes during supercooling preservation. Cryobiology. 2015; 71:125-9. https://doi.org/10.1016/j. cryobiol.2015.04.010 PMid:25936340 PMCid:PMC450 6890.
  • Del BC, Fracassetti D, Lanti C, Porrini M, Riso P. Comparison of DNA damage by the comet assay in fresh versus cryopreserved peripheral blood mononuclear cells obtained following dietary intervention. Mutagenesis. 2015; 30:29-35. https://doi. org/10.1093/mutage/geu058 PMid:25527725.
  • Alotaibi NAS, Slater NKH, Rahmoune H. Salidroside as a novel protective agent to improve red blood cell cryopreservation. PLoS One. 2016; 11. https:// doi.org/10.1371/journal.pone.0162748 PMid:27631782 PMCid:PMC5025239.
  • Limaye LS. Bone marrow cryopreservation: Improved recovery due to bioantioxidant additives in the freezing solution. Stem Cells. 1997; 15:353-8. https:// doi.org/10.1002/stem.150353 PMid:9323797.
  • Silva ECB, Cajueiro JFP, Silva SV, Soares PC, Guerra MMP. Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 2012; 77:1722-6. https://doi. org/10.1016/j.theriogenology.2011.11.023 PMid:22289215.
  • Swami DS, Kumar P, Malik RK, Saini M, Kumar D, Jan MH. The cryoprotective effect of iodixanol in buffalo semen cryopreservation. Anim Reprod Sci. 2017; 179:20-6. https://doi.org/10.1016/j.anireprosci.2017.01. 012 PMid:28189350.
  • Okada K, Wangpoengtrakul C, Tanaka T, Toyokuni S, Uchida K, Osawa T. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stressinduced renal injury in mice. J Nutr. 2001; 131:2090-5. https://doi.org/10.1093/jn/131.8.2090 PMid:11481399.
  • Rukkumani R, Aruna K, Varma PS, Rajasekaran KN, Menon VP. Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress. J Pharmacol Sci. 2004; 7:274-83.
  • Waly MI, Al Moundhri MS, Ali BH. Effect of curcumin on cisplatin-and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Ren Fail. 2011; 33(5):518-23. https://doi.org/10.3109/0886022X. 2011.577546 PMid:21574897.
  • Zhang BY, Shi YQ, Chen X, Dai J, Jiang ZF, Li N, Zhang ZB. Protective effect of curcumin against formaldehyde induced genotoxicity in A549 cell lines. J Appl Toxicol. 2013; 33(12):1468-73. https://doi.org/10.1002/jat.2814 PMid:23059809.
  • Linnik O, Gonchar O, Nosar V, Drevytska T, Kovalyov O, Mankovska I. Effect of curcumin on mitochondrial function of cardiomyocytes with doxorubicin-induced oxidative stress. Fiziol Zh. 2017; 63(1):10-16. https:// doi.org/10.15407/fz63.01.010 PMid:29975823.
  • Pathan A, Nariya A, Shah N, Shaikh I, Vyas J, Jhala D. In Vitroamelioration by curcumin on genotoxicity in workers with elevated blood cadmium level. J Nat Remed 2017; 17(1):20-7. https://doi.org/10.18311/ jnr/2017/15752.
  • Branco CS, Garcez ME, Pasqualotto FF, Erdtman B, Salvador M. Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology. 2010; 60:235-7. https://doi.org/10.1016/j. cryobiol.2009.10.012 PMid:19895799.
  • Shen C, Cheng W, Yu P, Wang L, Zhou L, Zeng L, Yang Q. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregula ting the expression of Nrf2, HO-1 and NQO1 in vitro. Mol Med Rep. 2016; 14(4):3646-54. https://doi.org/ 10.3892/mmr.2016.5670 PMid:27573874 PMCid:PMC5 042764.
  • Goel A, Aggarwal BB. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer. 2010; 62(7):919-30. https:// doi.org/10.1080/01635581.2010.509835 PMid:20924967.
  • Kelkel M, Jacob C, Dicato M, Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecule. 2010; 15(10):7035-74. https:// doi.org/10.3390/molecules15107035 PMid:20944521 P MCid:PMC6259231.
  • Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell. 2002; 9:387-99. https://doi.org/10.1016/ S1097-2765(02)00445-8.
  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24:R453-62. https://doi.org/10.1016/j.cub.2014.03.034 PMid:24845678 PMCid:PMC4055301.
  • Bortolin RC, Gasparotto J, Vargas AR, da Silva Morrone M, Kunzler A, Henkin BS, Chaves PR, Roncato S, Gelain DP, Moreira JCF. Effects of freeze-thaw and storage on enzymatic activities, protein oxidative damage, and immunocontent of the blood, liver, and brain of rats, Biopreserv Biobank. 2017; 15:182-90. https://doi.org/10.1089/bio.2016.0023 PMid:27662116.
  • Mostek A, Dietrich MA, Slowin Ska M, Ciereszko A. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology. 2017; 92:95-102. https://doi.org/10.1016/j.theriogenology.201 7.01.011 PMid:28237350.
  • Grune T, Davies KJ. The proteasomal system and HNEmodified proteins. Mol Aspects Med. 2003; 24(4-5):195- 204. https://doi.org/10.1016/S0098-2997(03)00014-1.
  • Li J, Wu N, Chen X, Chen H, Yang X, Liu C. Curcumin protects islet cells from glucolipo toxicity by inhibiting oxidative stress and NADPH oxidase activity both in vitro and in vivo. Islets. 2019; 1(5):152-64. https://doi. org/10.1080/19382014.2019.1690944 PMid:31750757 P MCid:PMC6930025.
  • Len JS, Darius KWS, Shi-Xiong T. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019; 39(8). https://doi.org/10.1042/BSR20 191601 PMid:31371631 PMCid:PMC6712439.
  • Aliakbari F, Gilani MAS, Amidi F, Baazm M, Korouji M, Izadyar F, Abbasi M. Improving the efficacy of cryopreservation of spermatogonia stem cells by antioxidant supplements. Cell Reprogram. 2016; 18(2):87-95. https://doi.org/10.1089/cell.2015.0067 PM id:27055629.
  • Dudylina AL, Ivanova MV, Shumaev KB, Ruugev EK. Superoxide formation in cardiac mitochondria and effect of phenolic antioxidants. Cell Biochem Biophys. 2019; 77(1):99-107. https://doi.org/10.1007/s12013-018 -0857-2 PMid:30218405.
  • Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007; 19(9):1807- 19. https://doi.org/10.1016/j.cellsig.2007.04.009 PMid: 17570640.
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1):44-84. https://doi. org/10.1016/j.biocel.2006.07.001 PMid:16978905.
  • Rajendran P, Nandakumar N, Rengarajan T. Antioxidants and human diseases. Clin Chim Acta. 2014; 436:332-47. https://doi.org/10.1016/j.cca.2014.06.004 PMid:24933428.
  • Pizzino G, Irrera N, Cucinotta M. Oxidative stress: Harms and benefits for human health, Oxid Med Cell Longev. 2017; 2017. https://doi.org/10.1155/2017/8416 763 PMid:28819546 PMCid:PMC5551541.
  • Therond P. Oxidative stress and damages to biomolecules (lipids, proteins, DNA), Ann Pharm Fr. 2006; 64(6):383- 9. https://doi.org/10.1016/S0003-4509(06)75333-0.
  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5:9-19. https://doi. org/10.1097/WOX.0b013e3182439613 PMid:23268465 PMCid:PMC3488923.
  • Hardikar AA, Risbud MV, Remacle C, Reusens B, Hoet JJ, Bhonde RR. Islet cryopreservation: Improved recovery following taurine pretreatment. Cell Transplant. 2001; 10(3):247-53. https://doi.org/10.3727/000000001783986 756 PMid:11437070.
  • Sasnoor LM, Kale VP, Limaye LS. Prevention of apoptosis as a possible mechanism behind improved cryoprotection of hematopoietic cells by catalase and trehalose. Transplantation. 2005; 80(9):1251-60. https://doi.org/10.1097/01.tp.0000169028.01327.90 PMid:16314793.
  • Katenz E, Vondran FWR, Schwartlander R, Pless G, Gong X, Cheng X. Cryopreservation of primary human hepatocytes: The benefit of trehalose as an additional cryoprotective agent. Liver Transpl. 2007; 13(1):38-45. https://doi.org/10.1002/lt.20921 PMid:17154395.
  • Lee YA, Kim YH, Kim BJ, Kim BG, Kim KJ, Auh JH. Cryopreservation in trehalose preserves functional capacity of murine spermatogonial stem cells. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.0054 889 PMid:23349986 PMCid:PMC3551902.
  • Shinde P, Khan N, Melinkeri S, Kale V, Limaye L. Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. Transfusion. 2019; 59(2):686-96. https://doi.org/10.1111/trf.15028 PM id:30456902.
  • Tecklenburg SL, Mickleborough TD, Fly AD, Bai Y, Stager J M. Ascorbic acid supplementation attenuates exercise-induced bronchoconstriction in patients with asthma. Respir Med. 2007; 101(8):1770-8. https://doi org/10.1016/j.rmed.2007.02.014 PMid:17412579.
  • Kalthur G, Raj S, Thiyagarajan A, Kumar S, Kumar P, Adiga SK. Vitamin E supplementation in semenfreezing medium improves the motility and protects sperm from freeze-thaw induced DNA damage, Fertil Steril. 2011; 95(3):1149-51. https://doi.org/10.1016/j. fertnstert.2010.10.005 PMid:21067726.
  • Xue WJ, Luo XH, Li Y, Liu HB, Tian XH, Feng XS. Effects of astragalosides on cultured islets after cryopreservation in rats. Transplant Proc. 2011; 43(10):3908-12. https://doi. org/10.1016/j.transproceed.2011.10.039 PMid:22172871.
  • Matsumura K, Hayashi F, Nagashima T, Hyon SH. Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J Biomater Sci Polym Ed. 2013; 24(12):1484-97. https://doi.org/10. 1080/09205063.2013.771318 PMid:23829460.
  • Zeng W, Xiao J, Zheng G, Xing F, Tipoe GL, Wang X, He C, Chen ZY, Liu Y. Antioxidant treatment enhances human mesenchymal stem cell anti- stress ability and therapeutic efficacy in acute liver failure model. Sci Rep. 2015; 5. https://doi.org/10.1038/srep11100 PMid:26057 841 PMCid:PMC4460871.
  • Aliakbari F, Gilani MAS, Yazdekhasti H, Koruji M, Asgari HR, Baazm M. Izadyar F, Kharrazi NE, Khanezad M, Abbasi M. Effects of antioxidants, catalase and α-tocopherol on cellviability and oxidative stress variables in frozen-thawed mice spermatogonial stem cells. Artif Cells Nanomed Biotechnol. 2017; 45:63-8. https://doi.org/10.3109/21691401.2016.1138491 PMid: 27123904.
  • Shabani H, Zandi M, Ofogi H, Sanjabi MR, Pajooh KH. The effect of combining vitamin E and C on the viability improvement of transfected ovine spermatogonial stem cells after cryopreservation and thawing. Turkish J Vet Anim Sci. 2017; 41(5):648-55. https://doi.org/10.3906/ vet-1701-38.
  • Abdillah DA, Setyawan EMN, Oh HJ, Ra K, Lee SH, Kim MJ, Lee BC. Iodixanol supplementation during sperm cryopreservation improves protamine level and reduces reactive oxygen species of canine sperm. J Vet Sci. 2019; 20:79-86. https://doi.org/10.4142/jvs.2019.20 .1.79 PMid:30481988 PMCid:PMC6351762.
  • Hirzel E, Lindinger PW, Maseneni S, Giese M, Rhein VV, Eckert A, Eberle AN. Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocyte. J Recept Signal Transduct Res. 2013; 33(5):304-12. https://doi.org/10.3109/10799893.2 013.822887 PMid:23914782.
  • Gerets HHJ, Hanon E, Cornet M, Dhalluin S, Depelchin O, Canning M, Atienzar FA. Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: A preliminary study using a multiplexing approach. Toxicol in Vitro. 2009; 23(2):319-32. https://doi.org/10.1016/j.tiv.2008.11.012 PMid:19110050.
  • Lonare MK, Vemu B, Singh AK, Dumka VK, Singla S, Sharma SK. Cytotoxicity and oxidative stress alterations induced by aldrinin balb/c 3T3 fibroblast cells. Proc Natl Acad Sci India, B: Biol Sci. 2017; 87(4):1209-16. https:// doi.org/10.1007/s40011-015-0694-7.
  • Arun P, Oguntayo S, Alamneh Y, Honnold C, Wang Y, Valiyaveettil M, Long JB, Nambiar MP. Rapid release of tissue enzymes into blood after blast exposure: Potential use as biological dosimeters. PLoS One. 2012; 7(4). https://doi.org/10.1371/journal.pone.0033798 PM id:22493674 PMCid:PMC3320892.
  • Waghe P, Saini SPS, Rampal S, Prakash N. Sub-chronic exposure to carbendazim induces biochemical and hematological alterations in male goats. Toxicol Environ Chem. 2013; 95(2):330-6. https://doi.org/10.1080/02772 248.2013.770859.
  • Alam J, Md. Mujahid B, Jahan Y, Bagga P, Md. Azizur R. Hepatoprotective potential of ethanolic extract of Aquilaria agallocha leaves against paracetamol induced hepatotoxicity in SD rats. J Tradit Complement Med. 2017; 7(1):9-13. https://doi.org/10.1016/j.jtcme.2015.12.006 PMid:28053882 PMCid:PMC5198823.
  • Chakroun S, Intissar G, Lobna E, Oumaima A, Fadoua N, Emna K, Najjar MF, Zohra H, Hassen BC. Imidacloprid enhances liver damage in wistar rats: Biochemical, oxidative damage and histological Assessment. J Coast Life Med. 2017; 5(12):540-6. https://doi.org/10.12980/ jclm.5.2017J7-149.
  • Gelen V, Sengul E, Gedikli S, Atila G, Uslu H , Makav M. The protective effect of rutin and quercetin on 5-FU-induced hepatotoxicity in rats. Asian Pac J Trop Biomed. 2017; 7(7):647-53. https://doi.org/10.1016/j.ap jtb.2017.06.013.
  • Mahmoodzadeh Y, Mohammad M, Rezagholizadeh L. Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats. Toxicol Rep. 2017; 4:455-62. https://doi.org/10.1016 /j.toxrep.2017.08.003 PMid:28959674 PMCid:PMC56 15166.
  • Abou Seif HS. Physiological changes due to hepatotoxicity and the protective role of some medicinal plants. Beni-Suef Univ J Basic Appl Sci. 2016; 5:134-46. https://doi.org/10.1016/j.bjbas.2016.03.004.
  • Boz I, Belviranli M, Okudan N. Curcumin modulates muscle damage but not oxidative stress and antioxidant defense following eccentric exercise in rats. Int J Vitam Nutr Res. 2014; 84(4):163-72. https://doi. org/10.1024/0300-9831/a000203 PMid:26098480.
  • McFarlin BK, Venable AS, Henning AL, Sampson JNB, Pennel K, Vingren JL, Hill DW. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin. 2016:72-8. https://doi.org/10.1016/j.bbacli.2016.02.003 PMid:27051592 PMCid:PMC4802396.
  • Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018; 54(4):287-93. https://doi. org/10.1016/j.ajme.2017.09.001.
  • Odani M, Komatsu Y, Oka S, Iwahashi H. Screening of genes that respond to cryopreservation stress using yeast DNA microarray. Cryobiology. 2003; 47(2):155- 64. https://doi.org/10.1016/j.cryobiol.2003.09.001 PM id:14580849.
  • Takahashi S, Ando A, Takagi H, Shima J. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis. Appl Environ Microbiol. 2009; 75(21):6706- 11. https://doi.org/10.1128/AEM.00905-09 PMid:19749 072 PMCid:PMC2772427.
  • Park JI, Grant CM, Davies MJ, Dawes IW. The cytoplasmic Cu, Zn superoxide dismutase of Saccha romyces cerevisiae is required for resistance to freezethaw stress. Generation of free radicals during freezing and thawing. J Biol Chem. 1998; 273(36):22921-8.
  • https://doi.org/10.1074/jbc.273.36.22921 PMid:9722512 91. Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S. Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol. 2003; 92(1):33-8. https://doi.org/10.1034/j.1600-0773.2003.92 0106.x PMid:12710595.
  • Li Y, Cao Z, Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol Res. 2006; 53(1):6-15. https://doi.org/10.1016/j.phrs.2005.08.002 PMid:16169 743.
  • Eddine BI, Hakima T, Abdelkrim T. Combined effect of quercetin and resveratrol induces anxiolytic-like behavior and improves brain antioxidant capacity in male wistar rat. Asian J Anim Sci. 2015; 91:157-61. https://doi.org/10.3923/ajas.2015.157.161.
  • Watanabe S, Fukui T. Suppressive effect of curcumin on trichloroethylene-induced oxidative stress. J Nutr Sci Vitaminol (Tokyo). 2000; 46(5):230-4. https://doi. org/10.3177/jnsv.46.230 PMid:11234915.
  • Singh R, Sharma P. Hepatoprotective effect of curcumin on lindane-induced oxidative stress in male wistar rats. Toxicol Int. 2011; 18(2):124-9. https://doi. org/10.4103/0971-6580.84264 PMid:21976817 PMCid: PMC3183619.
  • Sankar P, Telang AG, Manimaran A. Protective effect of curcumin on cypermethrin-induced oxidative stress in wistar rats. Exp Toxicol Pathol. 2012; 64(5):487-93. https://doi.org/10.1016/j.etp.2010.11.003 PMid:21130633.
  • Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother. 2017; 87:223-9. https://doi.org/10.1016/j.biopha.2016.12.105 PMid:280 61405.
  • Rubio-Ruiz ME, Guarner-Lans V, Cano-Martinez A, Diaz-Diaz E, Manzano-Pech L, Gamas-Magana A, Castrejon-Tellez V, Tapia-Cortina C, Perez-Torres I. Resveratrol and quercetin administration improves antioxidant defenses and reduces fatty liver in metabolic syndrome rats. Molecules. 2019; 24(7). https://doi. org/10.3390/molecules24071297 PMid:30987086 PMC id:PMC6479544.

Abstract Views: 151

PDF Views: 0




  • Bio-Antioxidants Protect the Buffalo Bone Marrow Derived Mesenchymal Stem Cells against Oxidative Stress Induced During Freeze-Thaw Cycle

Abstract Views: 151  |  PDF Views: 0

Authors

M. Sharma.
Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India
Navjot Kaur.
Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India
D. Singh.
Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India
M. K. Lonare.
Department of Veterinary Pharmacology and Toxicology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India
R. Udehiya.
Department of Veterinary Surgery and Radiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana – 141001, Punjab., India

Abstract


The present investigation was planned to evaluate the effect of curcumin (CUR) and resveratrol (RES) on oxidative stress indicators (LPO, O2- radical, ROS and TPC), antioxidant status (GSH, GPx, SOD, CAT and GST) and cytotoxicity markers (ALP, LDH, GGT and CK-MB) in mesenchymal stem cells (MSCs) derived from buffalo bone marrow during the freeze-thaw cycle of one month. MSCs were isolated and cultured in high glucose DMEM supplemented with 15% FBS. MSCs were found to be positive for alkaline phosphatase (AP) activity and stem cell markers (CD73 and OCT4). Results revealed a significant reduction in (p≤0.05) in oxidative stress parameters and cytotoxicity markers, while, the levels of cellular antioxidants were found to be significantly increased (p≤0.05) in CUR/RES alone and in combination groups as compared to the control group. In conclusion, the addition of bioantioxidants in the cryopreservation medium has improved the post-thaw cell recovery through suppression of oxidative stress-induced during the freeze-thaw cycle.

Keywords


Antioxidants, Buffalo, Curcumin, Mesenchymal Stem Cells, Oxidative Stress, Resveratrol.

References





DOI: https://doi.org/10.18311/10.18311%2Fti%2F2021%2Fv28i1%2F24809