Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Environmental Fate, Exposure and Toxicity of New Emerging Pollutant: Tetrabromobisphenol A.


Affiliations
1 Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab – 143005,, India
2 Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab – 143005,, India
     

   Subscribe/Renew Journal


Brominated Flame Retardants (BFRs) are being utilized to reduce the flammability of plastics, textiles, and electronics. They differ in their chemical properties and structures, and it is conventional that these distinctions alter their biological interactions as well as toxicity. Tetra-Bromo-Bis-Phenol A (TBBPA) is a pervasive environmental contaminant that is seen in both abiotic and biotic matrices. This review discusses the occurrence, distribution, and fate of TBBPA from source to the environment. Recent studies have raised worry over the potentially harmful implications of TBBPA exposure in humans and wildlife, prompting its characterization under group 2A “Probably carcinogenic to humans” by the International Agency for Research on Cancer. Worldwide there are no present confinements on its production and usage. On the other hand, very little information is accessible with respect to its toxicity to humans and aquatic animals. More research is required to characterize human exposure to TBBPA in and around production facilities, as well as in e-waste recycling regions. So as to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways which may affect the workers and local residents around the exposure sites.

Keywords

Brominated Flame Retardants (BFRs), E-Waste, Tetra- Bromo-Bis-Phenol A (TBBPA), Toxicity.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Pittinger CA, Pecquet AM. Review of historical aquatic toxicity and bioconcentration data for the brominated flame retardant tetrabromobisphenol A (TBBPA): Effects to fish, invertebrates, algae, and microbial communities. Environ Sci Pollut Res. 2018; 25(15):14361-14372. https://doi.org/10.1007/s11356-018-1998-y. PMid:29671227.
  • de Wit CA, Herzke D, Vorkamp K. Brominated flame retardants in the Arctic environment - trends and new candidates. Sci Total Environ. 2010; 408(15):2885-2918. https://doi.org/10.1016/j.scitotenv.2009.08.037. PMid:19815253.
  • Sanders JM, Coulter SJ, Knudsen GA, Dunnick JK, Kissling GE, Birnbaum LS. Disruption of estrogen homeostasis as a mechanism for uterine toxicity in Wistar Han rats treated with tetrabromobisphenol A. Toxicol Appl Pharmacol. 2016; 298:31-39. https://doi.org/10.1016/j.taap.2016.03.007. PMid:26988606 PMCid:PMC4825186.
  • Usenko CY, Abel EL, Hopkins A, Martinez G, Tijerina J, Kudela M, Norris N, Joudeh L, Bruce ED. Evaluation of common use Brominated Flame Retardant (BFR) toxicity using a Zebrafish embryo model. Toxics. 2016; 4(3):21. https://doi.org/10.3390/toxics4030021. PMid:29051424 PMCid:PMC5606660.
  • Zhou H, Yin N, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci. 2020; 97:54-66. https://doi.org/10.1016/j.jes.2020.04.039. PMid:32933740.
  • Liu K, Li J, Yan S, Zhang W, Li Y, Han D. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere. 2016; 148:8-20. https://doi.org/10.1016/j.chemosphere.2016.01.023. PMid:26800486.
  • Kefeni KK, Okonkwo JO, Olukunle OI, Botha BM. Brominated flame retardants: Sources, distribution, exposure pathways, and toxicity. Environ Rev. 2011; 19(1):238-253. https://doi.org/10.1139/a11-010.
  • De Boer J, Wester PG, Klamer HJC, Lewis WE, Boon JP. Do flame retardants threaten ocean life? Nature. 1998; 394(6688):28-29. https://doi.org/10.1038/27798. PMid:9665124.
  • Alaee M, Arias P, Sjödin A, Bergman Å. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/ regions and possible modes of release. Environ Int. 2003; 29(6):683-689. https://doi.org/10.1016/S0160-4120(03)00121-1. 10. Lee HB, Peart TE. Organic contaminants in Canadian municipal sewage sludge. Part I. Toxic or endocrine-disrupting phenolic compounds. Water Qual Res J Canada. 2002; 37(4):681-696. https://doi.org/10.2166/wqrj.2002.046.
  • Morris S, Allchin CR, Zegers BN, Haftka JJH, Boon JP, Belpaire C, Leonards PE, Van Leeuwen SP, De Boer J. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ Sci Technol. 2004; 38(21):5497-5504. https://doi.org/10.1021/es049640i. PMid:15575264.
  • Jakobsson K, Thuresson K, Rylander L, Sjödin A, Hagmar L, Bergman Å. Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians. Chemosphere. 2002; 46(5):709-716. https://doi.org/10.1016/S0045-6535(01)00235-1.
  • Thomsen C, Lundanes E, Becher G. Brominated flame retardants in archived serum samples from Norway: A study on temporal trends and the role of age. Environ Sci Technol. 2002; 36(7):1414-1418. https://doi.org/10.1021/es0102282. PMid:11999045.
  • Schauer UMD, Völkel W, Dekant W. Toxicokinetics of tetrabromobisphenol A in humans and rats after oral administration. Toxicol Sci. 2006; 91(1):49-58. https://doi.org/10.1093/toxsci/kfj132. PMid:16481339.
  • Kuiper RV, Van Den Brandhof EJ, Leonards PEG, Van Der Ven LTM, Wester PW, Vos JG. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test. Arch Toxicol. 2007; 81(1):1-9. https://doi.org/10.1007/s00204-006-0117-x. PMid:16738895.
  • Kuiper R V., Cantón RF, Leonards PEG, Jenssen BM, Dubbeldam M, Wester PW, Van den Berg M, Vos JG, Vethaak AD. Long-term exposure of European flounder (Platichthys flesus) to the flame-retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD). Ecotoxicol Environ Saf. 2007; 67(3):349-360. https://doi.org/10.1016/j.ecoenv.2006.12.001. PMid:17258806.
  • Van der Ven LTM, Van de Kuil T, Verhoef A, Verwer CM, Lilienthal H, Leonards PEG, Schauer UM, Cantón RF, Litens S, De Jong FH, Visser TJ. Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study. Toxicology. 2008; 245(1-2):76-89. https://doi.org/10.1016/j.tox.2007.12.009. PMid:18255212.
  • Grosse Y, Loomis D, Guyton KZ, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Mattock H, Straif K. Carcinogenicity of some industrial chemicals. Lancet Oncol. 2016; 17(4):419-420. https://doi.org/10.1016/S1470-2045(16)00137-6.
  • Environment Canada. Screening Assessment Report TBBPA. En14-110/2013E-PDF. Government of Canada, Ottawa, Ontario; 2013.
  • Kuramochi H, Kawamoto K, Miyasaki K, Nagahama K, Maeda K, Li XW, Shibata E, Nakamura T, Sakai SI. Determination of physicochemical properties of tetrabromobisphenol A. Environ Toxicol Chem. 2008; 27(12):2413-2418. https://doi.org/10.1897/07-472.1. PMid:18613742.
  • Watanabe I, Kashimoto T, Tatsukawa R. Identification of the flame retardant tetrabromobisphenol-a in the river sediment and the mussel collected in Osaka. Bull Environ Contam Toxicol. 1983; 31(1):48-52. https://doi.org/10.1007/BF01608765. PMid:6309291.
  • Matsukami H, Tue NM, Suzuki G, Someya M, Tuyen LH, Viet PH, Takahashi S, Tanabe S, Takigami H. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Sci Total Environ. 2015; 514:492-499. https://doi.org/10.1016/j.scitotenv. 2015.02.008. PMid:25701386.
  • Qu G, Liu A, Wang T, Zhang C, Fu J, Yu M, Sun J, Zhu N, Li Z, Wei G, Du Y. Identification of tetrabromobisphenol A allyl ether and tetrabromobisphenol A 2,3-dibromopropyl ether in the ambient environment near a manufacturing site and in mollusks at a coastal region. Environ Sci Technol. 2013; 47(9):4760-4767. https://doi.org/10.1021/es3049916. PMid:23550727.
  • Zhu ZC, Chen SJ, Zheng J, Tian M, Feng AH, Luo XJ, Mai BX. Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China. Sci Total Environ. 2014; 481(1):47-54. https://doi.org/10.1016/j.scitotenv.2014.02.023. PMid:24576782.
  • Xiong J, An T, Zhang C, Li G. Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region. Environ Geochem Health. 2015; 37(3):457-473. https://doi.org/10.1007/s10653-014-9658-8. PMid:25503846.
  • Feng AH, Chen SJ, Chen MY, He MJ, Luo XJ, Mai BX. Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD. Mar Pollut Bull. 2012; 64(5):919-925. https://doi.org/10.1016/j.marpolbul.2012.03.008. PMid:22475420.
  • Wang J, Liu L, Wang J, Pan B, Fu X, Zhang G, Zhang L, Lin K. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China. Environ Sci Pollut Res. 2015; 22(2):1020-1033. https://doi.org/10.1007/s11356-014-3399-1. PMid:25106518.
  • Yang S, Wang S, Liu H, Yan Z. Tetrabromobisphenol A: Tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China. Environ Sci Pollut Res. 2012; 19(9):4090-4096. https://doi.org/10.1007/s11356-012-1023-9. PMid:22825637.
  • He MJ, Luo XJ, Yu LH, Wu JP, Chen SJ, Mai BX. Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromobisphenol A in an aquatic environment in a highly industrialized area, South China: Vertical profile, phase partition, and bioaccumulation. Environ Pollut. 2013; 179:105-110. https://doi.org/10.1016/j.envpol.2013.04.016. PMid:23665846.
  • Song S, Song M, Zeng L, Wang T, Liu R, Ruan T, Jiang G. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China. Environ Pollut. 2014; 186:14-19. https://doi.org/10.1016/j.envpol.2013.11.023. PMid:24355443.
  • Gorga M, Martínez E, Ginebreda A, Eljarrat E, Barceló D. Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain). Sci Total Environ. 2013; 444:51-59. https://doi.org/10.1016/j.scitotenv.2012.11.066. PMid:23262324.
  • Xu J, Zhang Y, Guo C, He Y, Li L, Meng W. Levels and distribution of tetrabromobisphenol a and hexabromocyclododecane in Taihu Lake, China. Environ Toxicol Chem. 2013; 32(10):2249-2255. https://doi.org/10.1002/etc.2318. PMid:23804316.
  • Wu Y, Li Y, Kang D, Wang J, Zhang Y, Du D, Pan B, Lin Z, Huang C, Dong Q. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China. Sci Total Environ. 2016; 541:356-364. https://doi.org/10.1016/j.scitotenv.2015.09.038. PMid:26410710.
  • Zhou X, Guo J, Zhang W, Zhou P, Deng J, Lin K. Tetrabromobisphenol A contamination and emission in printed circuit board production and implications for human exposure. J Hazard Mater. 2014; 273:27-35. https://doi.org/10.1016/j.jhazmat.2014.03.003. PMid:24709479.
  • Ni HG, Zeng H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci Total Environ. 2013; 458-460:15-19. https://doi.org/10.1016/j.scitotenv.2013.04.003. PMid:23639907.
  • Schlabach M. Brominated Flame Retardants (BFR) in the Nordic Environment. In: Nordic Council of Ministers; 2011.
  • Wang X, Li C, Yuan X, Yang S. Contamination level, distribution characteristics, and ecotoxicity of tetrabromobisphenol a in water and sediment from Weihe River Basin, China. Int. J. Environ. Res. Public Health. 2020; 17(11):1-13. https://doi.org/10.3390/ijerph17113750. PMid:32466414 PMCid:PMC7312569.
  • Birnbaum LS, Staskal DF. Brominated flame retardants: Cause for concern? Environ Health Perspect. 2004; 112(1):9-17. https://doi.org/10.1289/ehp.6559. PMid:14698924 PMCid:PMC1241790.
  • Covaci A, Voorspoels S, Abdallah MAE, Geens T, Harrad S, Law RJ. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J. Chromatogr. A. 2009; 1216(3):346-363. https://doi.org/10.1016/j.chroma.2008.08.035. PMid:18760795.
  • Sellström U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere. 1995; 31(4):3085-3092. https://doi.org/10.1016/0045-6535(95)00167-7.
  • Takigami H, Suzuki G, Hirai Y, Sakai Sichi. Transfer of brominated flame retardants from components into dust inside television cabinets. Chemosphere. 2008; 73(2):161-169. https://doi.org/10.1016/j.chemosphere. 2008.06.032. PMid:18657291.
  • Abb M, Stahl B, Lorenz W. Analysis of brominated flame retardants in house dust. Chemosphere. 2011; 85(11):1657-1663. https://doi.org/10.1016/j.chemosphere. 2011.06.022. PMid:21724229. 43. Watanabe I, Sakai SI. Environmental release and behavior of brominated flame retardants. Environ Int. 2003; 29(6):665-682. https://doi.org/10.1016/S0160-4120(03)00123-5.
  • Geens T, Roosens L, Neels H, Covaci A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere. 2009; 76(6):755-760. https://doi.org/10.1016/j.chemosphere.2009.05.024. PMid:19535125.
  • Zhou X, Guo J, Zhang W, Zhou P, Deng J, Lin K. Occurrences and inventories of heavy metals and brominated flame retardants in wastes from printed circuit board production. Environ Sci Pollut Res. 2014; 21(17):10294-10306. https://doi.org/10.1007/s11356-014-2927-3. PMid:24777328.
  • BSEF. TBBPA factsheet: tetrabromobisphenol A for printed circuit boards and ABS plastics; 2012.
  • Ma J, Qiu X, Zhang J, Duan X, Zhu T. State of polybrominated diphenyl ethers in China: An overview. Chemosphere. 2012; 88(7):769-778. https://doi.org/10.1016/j.chemosphere.2012.03.093. PMid:22546636.
  • Duan H, Hu J, Tan Q, Liu L, Wang Y, Li J. Systematic characterization of generation and management of e-waste in China. Environ Sci Pollut Res. 2016; 23(2):1929-1943. https://doi.org/10.1007/s11356-015-5428-0. PMid:26408118.
  • Lee IS, Kang HH, Kim UJ, Oh JE. Brominated flame retardants in Korean river sediments, including changes in polybrominated diphenyl ether concentrations between 2006 and 2009. Chemosphere. 2015; 126:18-24. https://doi.org/10.1016/j.chemosphere. 2015.01.004. PMid:25655576.
  • Sánchez-Brunete C, Miguel E, Tadeo JL. Determination of tetrabromobisphenol-A, tetrachlorobisphenol- A and bisphenol-A in soil by ultrasonic assisted extraction and gas chromatography-mass spectrometry. J Chromatogr A. 2009; 1216(29):5497-5503. https://doi.org/10.1016/j.chroma.2009.05.065. PMid:19524246.
  • Sindiku O, Babayemi JO, Tysklind M, Osibanjo O, Weber R, Watson A, Schlummer M, Lundstedt S. Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in e-waste plastic in Nigeria. Environ Sci Pollut Res. 2015; 22(19):14515-14529. https://doi.org/10.1007/s11356-015-5260-6. PMid:26347415.
  • Labadie P, Tlili K, Alliot F, Bourges C, Desportes A, Chevreuil M. Development of analytical procedures for trace-level determination of polybrominated diphenyl ethers and tetrabromobisphenol A in river water and sediment. Anal Bioanal Chem. 2010; 396(2):865-875. https://doi.org/10.1007/s00216-009-3267-x. PMid:19921511.
  • Law RJ, Alaee M, Allchin CR, Boon JP, Lebeuf M, Lepom P, Stern GA. Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife. Environ Int. 2003; 29(6):757-770. https://doi.org/10.1016/S0160-4120(03)00110-7.
  • Harrad S, Abdallah MAE, Rose NL, Turner SD, Davidson TA. Current-use brominated flame retardants in water, sediment, and fish from english lakes. Environ Sci Technol. 2010; 44(13):5318. https://doi.org/10.1021/es101746s.
  • Johnson-Restrepo B, Adams DH, Kannan K. Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere. 2008; 70(11):1935-1944. https://doi.org/10.1016/j.chemosphere.2007.10.002. PMid:18037156.
  • Malkoske T, Tang Y, Xu W, Yu S, Wang H. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources. Sci Total Environ. 2016; 569-570:1608-1617. https://doi.org/10.1016/j.scitotenv.2016.06.062. PMid:27325014.
  • WHO. Tetrabromobisphenol A and Derivatives. Environmental Health Criteria 172. International Programme on Chemical Safety. World Health Organization, Geneva, Switzerland; 1995.
  • Han SK, Bilski P, Karriker B, Sik RH, Chignell CF. Oxidation of flame retardant tetrabromobisphenol A by singlet oxygen. Environ Sci Technol. 2008; 42(1):166-172. https://doi.org/10.1021/es071800d. PMid:18350892 PMCid:PMC2376276.
  • Eriksson J, Rahm S, Green N, Bergman Å, Jakobsson E. Photochemical transformations of tetrabromobisphenol A and related phenols in water. Chemosphere. 2004; 54(1):117-126. https://doi.org/10.1016/S0045-6535(03)00704-5.
  • Horikoshi S, Miura T, Kajitani M, Horikoshi N, Serpone N. Photodegradation of tetrahalobisphenol- A (X = Cl, Br) flame retardants and delineation of factors affecting the process. Appl. Catal. B. 2008; 84(3-4):797-802. https://doi.org/10.1016/j.apcatb.2008.06.023.
  • Bao Y, Niu J. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: Kinetics, mechanism and influencing factors. Chemosphere. 2015; 134:550-556. https://doi.org/10.1016/j.chemosphere.2014.12.016. PMid:25559172.
  • Voordeckers JW, Fennell DE, Jones K, Häggblom MM. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments. Environ Sci Technol. 2002; 36(4):696-701. https://doi.org/10.1021/es011081h. PMid:11878385.
  • Li F, Wang J, Jiang B, Yang X, Nastold P, Kolvenbach B, Wang L, Ma Y, Corvini PF, Ji R. Fate of Tetrabromobisphenol A (TBBPA) and Formation of Ester- and Ether-Linked Bound Residues in an Oxic Sandy Soil. Environ Sci Technol. 2015; 49(21):12758-12765. https://doi.org/10.1021/acs.est.5b01900. PMid:26444952.
  • Shi ZX, Wu YN, Li JG, Zhao YF, Feng JF. Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: Occurrence measurements in foods and human milk. Environ Sci Technol. 2009; 43(12):4314-4319. https://doi.org/10.1021/es8035626. PMid:19603640.
  • Cariou R, Antignac JP, Zalko D, Berrebi A, Cravedi JP, Maume D, Marchand P, Monteau F, Riu A, Andre F. Exposure assessment of French women and their newborns to tetrabromobisphenol-A: Occurrence measurements in maternal adipose tissue, serum, breast milk and cord serum. Chemosphere. 2008; 73(7):1036-1041. https://doi.org/10.1016/j.chemosphere. 2008.07.084. PMid:18790516.
  • Shi Z, Zhang L, Zhao Y, Sun Z, Zhou X, Li J, Wu Y. Dietary exposure assessment of Chinese population to tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether: Results of the 5th Chinese Total Diet Study. Environ Pollut. 2017; 229:539-547. https://doi.org/10.1016/j.envpol.2017.06.093. PMid:28688304.
  • Huang M, Li J, Xiao Z, Shi Z. Tetrabromobisphenol A and hexabromocyclododecane isomers in breast milk from the general population in Beijing, China: Contamination levels, temporal trends, nursing infant’s daily intake, and risk assessment. Chemosphere. 2020; 244:125524-125524. https://doi.org/10.1016/j.chemosphere.2019.125524. PMid:31812044.
  • Kim UJ, Oh JE. Tetrabromobisphenol A and hexabromocyclododecane flame retardants in infant-mother paired serum samples, and their relationships with thyroid hormones and environmental factors. Environ Pollut. 2014; 184:193-200. https://doi.org/10.1016/j.envpol.2013.08.034. PMid:24060738.
  • Antignac JP, Cariou R, Maume D, Marchand P, Monteau F, Zalko D, Berrebi A, Cravedi JP, Andre F, Le Bizec B. Exposure assessment of fetus and newborn to brominated flame retardants in France: Preliminary data. Mol Nutr Food Res. 2008; 52(2):258-265. https://doi.org/10.1002/mnfr.200700077. PMid:18186099.
  • ECB. European Union Risk Assessment Report - 2,2’, 6,6’-tetrabromo-4,4’- isopropylidenediphenol (tetrabromobisphenol-A or TBBP-A) (CAS: 79-94-7) Part II - Human Health. Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission; 2006.
  • Knudsen GA, Sanders JM, Sadik AM, Birnbaum LS. Disposition and kinetics of tetrabromobisphenol A in female Wistar Han rats. Toxicol Rep. 2014; 1:214-223. https://doi.org/10.1016/j.toxrep.2014.03.005. PMid:24977115 PMCid:PMC4071299.
  • Colnot T, Kacew S, Dekant W. Mammalian toxicology and human exposures to the flame retardant 2,2′,6,6′-tetrabromo-4,4′-isopropylidenediphenol (TBBPA): Implications for risk assessment. Arch Toxicol. 2014; 88(3):553-573. https://doi.org/10.1007/s00204-013-1180-8. PMid:24352537.
  • Kuester RK, Sólyom AM, Rodriguez VP, Sipes IG. The effects of dose, route, and repeated dosing on the disposition and kinetics of tetrabromobisphenol A in male F-344 rats. Toxicol Sci. 2007; 96(2):237-245. https://doi.org/10.1093/toxsci/kfm006. PMid:17234645.
  • Sjödin A, Patterson DG, Bergman Åke Å. A review on human exposure to brominated flame retardants - Particularly polybrominated diphenyl ethers. Environ Int. 2003; 29(6):829-839. https://doi.org/10.1016/S0160-4120(03)00108-9.
  • Nakajima A, Saigusa D, Tetsu N, Yamakuni T, Tomioka Y, Hishinuma T. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicol Lett. 2009; 189(1):78-83. https://doi.org/10.1016/j.toxlet.2009.05.003. PMid:19463927.
  • Lai DY, Kacew S, Dekant W. Tetrabromobisphenol A (TBBPA): Possible modes of action of toxicity and carcinogenicity in rodents. Food Chem Toxicol. 2015; 80:206-214. https://doi.org/10.1016/j.fct.2015.03.023. PMid:25818463.
  • Liang S, Zhou H, Yin N, Lu Y, Faiola F. Embryoid body-based RNA-seq analyses reveal a potential TBBPA multifaceted developmental toxicity. J Hazard Mater. 2019; 376:223-232. https://doi.org/10.1016/j.jhazmat.2019.05.030. PMid:31129320.
  • Jarosiewicz M, Krokosz A, Marczak A, Bukowska B. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants. Chemosphere. 2019; 227:93-99. https://doi.org/10.1016/j.chemosphere.2019.04.008. PMid:30986606.
  • Akiyama E, Kakutani H, Nakao T, Motomura Y, Takano Y, Sorakubo R, Mizuno A, Aozasa O, Tachibana K, Doi T, Ohta S. Facilitation of adipocyte differentiation of 3T3-L1 cells by debrominated tetrabromobisphenol A compounds detected in Japanese breast milk. Environ Res. 2015; 140:157-164. https://doi.org/10.1016/j.envres.2015.03.035. PMid:25863188.
  • Jiang S, Miao J, Wang X, Liu P, Pan L. Inhibition of growth in juvenile manila clam Ruditapes philippinarum: Potential adverse outcome pathway of TBBPA. Chemosphere. 2019; 224:588-596. https://doi.org/10.1016/j.chemosphere.2019.02.157. PMid:30844590.
  • Cope RB, Kacew S, Dourson M. A reproductive, developmental and neurobehavioral study following oral exposure of tetrabromobisphenol A on Sprague-Dawley rats. Toxicology. 2015; 329:49-59. https://doi.org/10.1016/j.tox.2014.12.013. PMid:25523853.
  • Kitamura S, Jinno N, Ohta S, Kuroki H, Fujimoto N. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem Biophys Res Commun. 2002; 293(1):554-559. https://doi.org/10.1016/S0006-291X(02)00262-0.
  • Kitamura S, Kato T, Iida M, Jinno N, Suzuki T, Ohta S, Fujimoto N, Hanada H, Kashiwagi K, Kashiwagi A. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sciences. 2005; 76(14):1589-1601. https://doi.org/10.1016/j.lfs.2004.08.030. PMid:15680168.
  • Lilienthal H, Verwer CM, van der Ven LTM, Piersma AH, Vos JG. Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats: Neurobehavioral effects in offspring from a one-generation reproduction study. Toxicology. 2008; 246(1):45-54. https://doi.org/10.1016/j.tox.2008.01.007. PMid:18295390.
  • Williams AL, Desesso JM. The potential of selected brominated flame retardants to affect neurological development. J Toxicol Environ Health B Crit Rev. 2010; 13(5):411-448. https://doi.org/10.1080/10937401003751630. PMid:20582854.
  • Meerts IATM, Van Zanden JJ, Luijks EAC, Van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman Å, Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in Vitro. Toxicol Sci. 2000; 56(1):95-104. https://doi.org/10.1093/toxsci/56.1.95. PMid:10869457.
  • Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Zegers BN. In vitro screening of the endocrine disrupting potency of brominated flame retardants and their metabolites. 2004; 66:3016-3020.
  • Gosavi RA, Knudsen GA, Birnbaum LS, Pedersen LC. Mimicking of estradiol binding by flame retardants and their metabolites: A crystallographic analysis. Environ Health Perspect. 2013; 121(10):1194-1199. https://doi.org/10.1289/ehp.1306902. PMid:23959441 PMCid:PMC3801471.
  • Hoffmann M, Gogola J, Kotula-Balak M, Ptak A. Stimulation of ovarian cell proliferation by tetrabromobisphenol A but not tetrachlorobisphenol A through G protein-coupled receptor 30. Toxicol in Vitro. 2017; 45:54-59. https://doi.org/10.1016/j.tiv.2017.08.009. PMid:28811233.
  • McCarthy MM, Wright CL, Schwarz JM. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Horm behav. 2009; 55(5):655-665. https://doi.org/10.1016/j.yhbeh.2009.02.012. PMid:19682425 PMCid:PMC2742630.
  • Simerly RB. Wired for reproduction: Organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci. 2002; 25:507-536. https://doi.org/10.1146/annurev.neuro.25.112701.142745. PMid:12052919.
  • Williams GR. Thyroid hormone actions in cartilage and bone. Eur Thyroid J. 2012; 3-13. https://doi.org/10.1159/000345548.
  • Wagner MS, Wajner SM, Maia AL. The role of thyroid hormone in testicular development and function. J Endocrinol. 2008; 199(3):351-365. https://doi.org/10.1677/JOE-08-0218. PMid:18728126 PMCid:PMC2799043
  • Chan S, Kilby MD. Thyroid hormone and central nervous system development. J Endocrinol. 2000; 165(1):1-8. https://doi.org/10.1677/joe.0.0500001.
  • Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012; 355(2):240-248. https://doi.org/10.1016/j.mce.2011.09.005. PMid:21939731.
  • Guyot R, Chatonnet F, Gillet B, Hughes S, Flamant F. Toxicogenomic analysis of the ability of brominated flame retardants TBBPA and BDE-209 to disrupt thyroid hormone signaling in neural cells. Toxicology. 2014; 325:125-132. https://doi.org/10.1016/j.tox.2014.08.007. PMid:25172293.
  • Parsons A, Lange A, Hutchinson TH, Miyagawa S, Iguchi T, Kudoh T, Tyler CR. Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio). Aquat Toxicol. 2019; 209:99-112. https://doi.org/10.1016/j.aquatox.2019.01.022. PMid:30763833.
  • Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience. 2017; 342:68-100. https://doi.org/10.1016/j.neuroscience.2015.09.070. PMid:26434624 PMCid:PMC4819012.
  • Lema SC, Dickey JT, Schultz IR, Swanson P. Dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain. Environ Health Perspect. 2008; 116(12):1694-1699. https://doi.org/10.1289/ehp.11570. PMid:19079722 PMCid:PMC2599765.
  • Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23(1):38-89. https://doi.org/10.1210/edrv.23.1.0455. PMid:11844744.
  • Bianco AC, Kim BW. Deiodinases: Implications of the local control of thyroid hormone action. J Clin Investig. 2006; 116(10):2571-2579. https://doi.org/10.1172/JCI29812. PMid:17016550 PMCid:PMC1578599.
  • Li Y, Zhou Q, Wang Y, Xie X. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants. Chemosphere. 2011; 82(2):204-209. https://doi.org/10.1016/j.chemosphere.2010.10.021. PMid:21051070.
  • Hu J, Liang Y, Chen M, Wang X. Assessing the toxicity of TBBPA and HBCD by zebrafish embryo toxicity assay and biomarker analysis. Environ Toxicol. 2009; 24(4):334-342. https://doi.org/10.1002/tox.20436. PMid:18767142.
  • Veldhoen N, Boggs A, Walzak K, Helbing CC. Exposure to tetrabromobisphenol-A alters TH-associated gene expression and tadpole metamorphosis in the Pacific tree frog Pseudacris regilla. Aquat Toxicol. 2006; 78(3):292-302. https://doi.org/10.1016/j.aquatox.2006.04.002. PMid:16678281.
  • Shi H, Qian L, Guo S, Zhang X, Liu J, Cao Q. Teratogenic effects of tetrabromobisphenol A on Xenopus tropicalis embryos. Comp Biochem Physiol C Toxicol Pharmacol. 2010; 152(1):62-68. https://doi.org/10.1016/j.cbpc.2010.02.013. PMid:20188212.
  • Shi YJ, Xu XB, Zheng XQ, Lu YL. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether. Comp Biochem Physiol C Toxicol Pharmacol. 2015; 174-175:32-38. https://doi.org/10.1016/j.cbpc.2015.06.005. PMid:26117064.
  • Kester MHA, Bulduk S, Van Toor H, Tibboel D, Meinl W, Glatt H, Falany CN, Coughtrie MW, Schuur AG, Brouwer A, Visser TJ. Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters. Journal of Clinical Endocrinol Metab. 2002; 87(3):1142-1150. https://doi.org/10.1210/jcem.87.3.8311. PMid:11889178.
  • Samuelsen M, Olsen C, Holme JA, Meussen-Elholm E, Bergmann A, Hongslo JK. Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line.Cell Bio Toxicol. 2001; 17(3):139-151. https://doi.org/10.1023/A:1011974012602. PMid:11693576.
  • Olsen CM, Meussen-Elholm ETM, Samuelsen M, Holme JA, Hongslo JK. Effects of the environmental oestrogens bisphenol A, tetrachlorobisphenol A, tetrabromobisphenol A, 4-hydroxybiphenyl and 4,4′-dihydroxybiphenyl on oestrogen receptor binding, cell proliferation and regulation of oestrogen sensitive proteins in the human. Pharmacol Toxicol. 2003; 92(4):180-188. https://doi.org/10.1034/j.1600-0773.2003.920408.x. PMid:12753421.
  • Meerts IATM, Letcher RJ, Hoving S, Marsh G, Bergman Å, Lemmen JG, van der Burg B, Brouwer A. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds. Environ Health Perspect. 2001; 109(4):399-407. https://doi.org/10.1289/ehp.01109399. PMid:11335189 PMCid:PMC1240281.
  • Körner W, Hanf V, Schulter W, Bartsch H, Zwirner M, Hagenmaier H. Validation and application of a rapid in vitro assay for assessing the estrogenic potency of halogenated phenolic chemicals. Chemosphere. 1998; 37(9-12):2395-2407. https://doi.org/10.1016/S0045-6535(98)00297-5.
  • Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009; 30(7):883-925. https://doi.org/10.1210/er.2009-0016. PMid:19887492.
  • Linhartova P, Gazo I, Shaliutina-Kolesova A, Hulak M, Kaspar V. Effects of tetrabrombisphenol A on DNA integrity, oxidative stress, and sterlet (Acipenser ruthenus) spermatozoa quality variables. Environ Toxicol. 2015; 30(7):735-745. https://doi.org/10.1002/tox.21953. PMid:24459015.
  • Zatecka E, Ded L, Elzeinova F, Kubatova A, Dorosh A, Margaryan H, Dostalova P, Peknicova J. Effect of tetrabrombisphenol A on induction of apoptosis in the testes and changes in expression of selected testicular genes in CD1 mice. Repro Toxicol. 2013; 35(1):32-39. https://doi.org/10.1016/j.reprotox. 2012.05.095. PMid:22677475.
  • Ogunbayo OA, Lai PF, Connolly TJ, Michelangeli F. Tetrabromobisphenol A (TBBPA), induces cell death in TM4 Sertoli cells by modulating Ca2+ transport proteins and causing dysregulation of Ca2+ homeostasis. Toxicol in Vitro. 2008; 22(4):943-952. https://doi.org/10.1016/j.tiv.2008.01.015. PMid:18329244.
  • Zhang H, Liu W, Chen B, He J, Chen F, Shan X, Du Q, Li N, Jia X, Tang J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. Environ Pollut. 2018; 243:394-403. https://doi.org/10.1016/j.envpol.2018.08.086. PMid:30199813. 117. von Krogh K, Ropstad E, Nourizadeh-Lillabadi R, Haug TM, Weltzien FA. In vitro effects of bisphenol a and tetrabromobisphenol a on cell viability and reproduction-related gene expression in pituitaries from sexually maturing atlantic cod (Gadus morhua L.). Fishes. 2019; 4(3):1-16. https://doi.org/10.3390/fishes4030048.
  • Steves AN, Bradner JM, Fowler KL, Clarkson-Townsend D, Gill BJ, Turry AC, Caudle WM, Miller GW, Chan AW, Easley IV CA. Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model. Science. 2018; 3:161-176. https://doi.org/10.1016/j.isci.2018.04.014. PMid:29901031 PMCid:PMC5994764.
  • Pullen S, Boecker R, Tiegs G. The flame retardants tetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin- 2 receptor α chain (CD25) in murine splenocytes. Toxicology. 2003; 184(1):11-22. https://doi.org/10.1016/S0300-483X(02)00442-0.
  • Saegusa Y, Fujimoto H, Woo GH, Ohishi T, Wang L, Mitsumori K, Nishikawa A, Shibutani M. Transient aberration of neuronal development in the hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats. Arch Toxicol. 2012; 86(9):1431-1442. https://doi.org/10.1007/s00204-012-0824-4. PMid:22415764.
  • Cho JH, Lee S, Jeon H, Kim AH, Lee W, Lee Y, Yang S, Yun J, Jung YS, Lee J. Tetrabromobisphenol A-Induced Apoptosis in Neural Stem Cells Through Oxidative Stress and Mitochondrial Dysfunction. Neurotox Res. 2020; 38(1):74-85. https://doi.org/10.1007/s12640-020-00179-z. PMid:32108298.
  • Viberg H, Eriksson P. Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Toxicology. 2011; 289(1):59-65. https://doi.org/10.1016/j.tox.2011.07.010. PMid:21820030.
  • Kim AH, Chun HJ, Lee S, Kim HS, Lee J. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention. Food Chem Toxicol. 2017; 106:223-231. https://doi.org/10.1016/j.fct.2017.05.053. PMid:28564613.
  • Chen J, Tanguay RL, Xiao Y, Haggard DE, Ge X, Jia Y, Zheng Y, Dong Q, Huang C, Lin K. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish. Environ Pollut. 2016; 216:53-63. https://doi.org/10.1016/j.envpol.2016.05.059. PMid:27239688.
  • Zhu B, Zhao G, Yang L, Zhou B. Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae. Chemosphere. 2018; 197:353-361. https://doi.org/10.1016/j.chemosphere. 2018.01.080. PMid:29407805.
  • Mariussen E, Fonnum F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles. Neurochem Int. 2003; 43(4-5):533-542. https://doi.org/10.1016/S0197-0186(03)00044-5.
  • Wang X, Wei L, Zhu J, He B, Kong B, Xue Z, Jin X, Fu Z. Environmentally relevant doses of tetrabromobisphenol A (TBBPA) cause immunotoxicity in murine macrophages. Chemosphere. 2019; 236:124413. https://doi.org/10.1016/j.chemosphere. 2019.124413. PMid:31545206.
  • Watanabe W, Shimizu T, Sawamura R, Hino A, Konno K, Hirose A, Kurokawa M. Effects of tetrabromobisphenol A, a brominated flame retardant, on the immune response to respiratory syncytial virus infection in mice. Int Immunopharmacol. 2010; 10(4):393-397. https://doi.org/10.1016/j.intimp.2009.12.014. PMid:20074668.
  • Reistad T, Mariussen E, Fonnum F. The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes: The involvement of the MAP kinase pathway and protein kinase C. Toxicol Sci. 2005; 83(1):89-100. https://doi.org/10.1093/toxsci/kfh298. PMid:15456914.
  • Szychowski KA, Wójtowicz AK. TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro. Pharmacol Rep. 2016; 68(1):20-26. https://doi.org/10.1016/j.pharep.2015.06.005. PMid:26721346.
  • Tetz LM, Kamau PW, Cheng AA, Meeker JD, Loch-Caruso R. Troubleshooting the dichlorofluorescein assay to avoid artifacts in measurement of toxicant-stimulated cellular production of reactive oxidant species. J Pharmacol Toxicol Methods. 2013; 67(2):56-60. https://doi.org/10.1016/j.vascn.2013.01.195. PMid:23380227 PMCid:PMC3795613.
  • Strack S, Detzel T, Wahl M, Kuch B, Krug HF. Cytotoxicity of TBBPA and effects on proliferation, cell cycle and MAPK pathways in mammalian cells. Chemosphere. 2007; 67(9):405-411. https://doi.org/10.1016/j.chemosphere.2006.05.136. PMid:17254629.
  • Fini JB, Riu A, Debrauwer L, Hillenweck A, Le mével S, Chevolleau S, Boulahtouf A, Palmier K, Balaguer P, Cravedi JP, Demeneix BA. Parallel biotransformation of tetrabromobisphenol A in Xenopus laevis and mammals: Xenopus as a model for endocrine perturbation studies. Toxicol Sci. 2012; 125(2):359-367. https://doi.org/10.1093/toxsci/ kfr312. PMid:22086976.
  • Zhang KS, Chen HQ, Chen YS, Qiu KF, Zheng X Bin, Li GC, Yang HD, Wen CJ. Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway. Biomed Pharmacother. 2014; 68(8):1037-1043. https://doi.org/10.1016/j.biopha.2014.09.003. PMid:25312822.
  • Baumann L, Ros A, Rehberger K, Neuhauss SCF, Segner H. Thyroid disruption in zebrafish (Danio rerio) larvae: Different molecular response patterns lead to impaired eye development and visual functions. Aquat Toxicol. 2016; 172:44-55. https://doi.org/10.1016/j.aquatox.2015.12.015. PMid:26765085.
  • Yin N, Liang S, Liang S, Yang R, Hu B, Qin Z, Liu A, Faiola F. TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. Environ Sci Technol. 2018; 52(9):5459-5468. https://doi.org/10.1021/acs.est.8b00414. PMid:29608295.
  • Jugan ML, Levi Y, Blondeau JP. Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol. 2010; 79(7):939-947. https://doi.org/10.1016/j.bcp.2009.11.006. PMid:19913515.
  • Hansen MK, Sharma AK, Dybdahl M, Boberg J, Kulahci M. In vivo Comet assay - statistical analysis and power calculations of mice testicular cells. Mutat Res Genet Toxicol Environ Mutagen. 2014; 774:29-40. https://doi.org/10.1016/j.mrgentox.2014.08.006. PMid:25440908.
  • Hu F, Pan L, Xiu M, Liu D. Dietary accumulation of tetrabromobisphenol A and its effects on the scallop Chlamys farreri. Comp Biochem Physiol Part - C: Toxicol Pharmacol. 2015; 167:7-14. https://doi.org/10.1016/j.cbpc.2014.08.002. PMid:25183548.
  • Wang B, Wang H, Han D, Chen J, Yin Y. Studying the mixture effects of brominated flame retardants and metal ions by comet assay. Environ Pollut. 2020; 267:115677. https://doi.org/10.1016/j.envpol.2020.115677. PMid:33254668.

Abstract Views: 208

PDF Views: 0




  • Environmental Fate, Exposure and Toxicity of New Emerging Pollutant: Tetrabromobisphenol A.

Abstract Views: 208  |  PDF Views: 0

Authors

Prince Sharma
Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab – 143005,, India
Khushboo Sharma
Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab – 143005,, India
Mandeep Singh
Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab – 143005,, India
Pooja Chadha
Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab – 143005,, India

Abstract


Brominated Flame Retardants (BFRs) are being utilized to reduce the flammability of plastics, textiles, and electronics. They differ in their chemical properties and structures, and it is conventional that these distinctions alter their biological interactions as well as toxicity. Tetra-Bromo-Bis-Phenol A (TBBPA) is a pervasive environmental contaminant that is seen in both abiotic and biotic matrices. This review discusses the occurrence, distribution, and fate of TBBPA from source to the environment. Recent studies have raised worry over the potentially harmful implications of TBBPA exposure in humans and wildlife, prompting its characterization under group 2A “Probably carcinogenic to humans” by the International Agency for Research on Cancer. Worldwide there are no present confinements on its production and usage. On the other hand, very little information is accessible with respect to its toxicity to humans and aquatic animals. More research is required to characterize human exposure to TBBPA in and around production facilities, as well as in e-waste recycling regions. So as to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways which may affect the workers and local residents around the exposure sites.

Keywords


Brominated Flame Retardants (BFRs), E-Waste, Tetra- Bromo-Bis-Phenol A (TBBPA), Toxicity.

References





DOI: https://doi.org/10.18311/ti%2F2022%2Fv29i1%2F27859