The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The aim of this study was to investigate and determine the powder and compaction properties of microcrystalline starch (MCS) and compare with the properties of a well known direct compression filler - binder, microcrystalline cellulose (MCC).

Cassava starch was extracted from the freshly harvested tubers of Manihot esculenta Crantz and subjected to 5hours of enzymatic hydrolysis to yield microcrystalline starch. The powder and compaction properties were evaluat ed and compared with MCC 101, a commercial brand of microcrystalline cellulose.

Results of the powder properties of MCS revealed differences in the particle size, angle of repose, flow rate, bulk density, tapped density, true density, Hausner's ratio, Carr 's index and powder porosity when compared to MCC. The compaction studies of both materials revealed that MCS had a faster onset of deformation and a greater extent of deformation in comparison to MCC. These results suggest that MCS has the potential of be ing used as a filler - binder in direct compression tableting.


Keywords

Microcrystalline Starch (MCS), Microcrystalline Cellulose (MCC), Powder Properties, Compaction Properties, Direct Compression Tableting and Filler - Binder.
User
Notifications
Font Size