Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Synthesis, Characterization, and Antibacterial Activity of some Chelates in O,n-donor Coordination Pattern Involving Schiff Bases Derived from 4-acetyl/benzoyl-1-(4'-nitrophenyl)-3-methyl-2-pyrazolin-5-one and Sulfamoxole


Affiliations
1 School of Chemistry, University of KwaZulu-Natal, Durban, 4000
2 Department of Chemistry, Navjivan Science College, Dahod, 389 151, Gujarat, India
     

   Subscribe/Renew Journal


The condensation reactions of 4-Acetyl/benzoyl-1-(4'-nitrophenyl)-3-methyl-2-pyrazolin-5-ones condensed with sulfamoxole to form bidentate NO donor Schiff bases were studied. The prepared Schiff base ligands were further utilized for the formation of metal chelates having the general formula [ML2.2H2O] where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and L = Ligand L1 and Ligand L2. These new compounds were characterized by conductance measurements, magnetic susceptibility measurements, elemental analysis, thermo gravimetric analysis, electronic and infrared spectroscopy. Both Schiff base ligands were found to have a mono-anionic bidentate nature and octahedral geometry was assigned to all metal complexes. All the complexes contained coordinated water which was lost at 141- 160 °C. These compounds were also screened for their in-vitro antibacterial activity against three bacterial species, namely; Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The metal complexes were found to have greater antibacterial activity than the Schiff base ligands

Keywords

Pyrazolin-5-one, Sulfamoxole, Schiff Base, Transition Metals, Spectroscopy, Antibacterial Activity
Subscription Login to verify subscription
User
Notifications
Font Size


  • F. Marchetti, C. Pettinari and R. Pettinari, Coord. Chem. Rev., 249, 2909 (2005).
  • M. Alaudeen, P.G. Sushama and A.M. Dorothy, Indian J. Chem., A 42, 1617 (2003).
  • Y. Funahashi, N.H. Sugi, T. Semba, Y. Yamamoto, S. Hamaoka, N. Tsukahara-Tamai, Y. Ozawa, A. Tsuruoka, K. Nara, K. Takahashi, T. Okabe, J. Kamata, T. Owa, N. Ueda, T. Haneda, M. Yonaga, K. Yoshimatsu and T. Wakabayashi, Cancer Res., 62, 6116 (2002).
  • T. Semba, Y. Funahashi, N. Ono, Y. Yamamoto, N.H. Sugi, M. Asada, K. Yoshimatsu, and T. Wakabayashi, Clin. Cancer Res., 10, 1430 (2004).
  • J. Sawi´nski and M. Gdaniec, Eur. J. Med. Chem., 40, 377 (2005). 6. Q. Chen, P.N.P. Rao and E.E. Knaus, Bioorg. Med. Chem., 13, 2459 (2005).
  • A.K. Gadad, M.N. Noolyi and R.V. Karpoormath, Bioorg. Med. Chem., 12, 651 (2004).
  • V.K. Agrawal, S. Bano, C.T. Supuran and P.V. Khadikar, Eur. J. Med. Chem. 39, 593 (2004).
  • C.M. Yeung, L.L. Klein, C.A. Flentge, J.T. Randolph, C. Zhao, M. Sun, T. Dekhtyar, V.S. Stoll and D.J. Kempf, Bioorg. Med. Chem. Lett. 15, 2275 (2005).
  • I. Enc´io, Dj. Morr´e, R. Villar, Mj. Gil and V. Mart´inez-Merino, Br. J. Cancer, 92, 690 (2005).
  • M.J. Nieta, F.L. Alovero, R.H. Manzo and M.R. Mazzieri, Eur. J. Med. Chem., 40, 361 (2005).
  • J.N. Dom´ inguez, C. Le´on, J. Rodrigues, N.G. de Dom´ inguez, J. Gut and P.J. Rosethal, IL Farmaco, 60, 307 (2005). 13. H. Yoshino, N. Ueda, J. Niijima, H. Sugumi, Y. Kotake, N. Koyanagi, K. Yoshimatsu, M. Asada and T. Watanabe, J. Med. Chem.,35, 2496 (1992).
  • G.G. Mohamed and M.A.M. Gad-Elkareem, Spectrochim. Acta, Part A 68, 1382 (2007).
  • A. Bult and H. Sigel,In: Metal Ions in Biological Systems, vol. 116. Marcel Dekker, New York, p. 261. (1983).
  • G.M. De Oliveira, A. Baraldi, L. De Lourenco Marques, E.S. Lang and M.A. Villetti, Inorg. Chim. Acta, 361, 132 (2008).
  • N.C. Baenziger, S.L. Modak and C.L. Fox Jr, Acta Crystallogr.,Sect. C 39, 1620 (1983).
  • L. Mishra, A. Jha, H. Itokawa and K. Takeya, Indian J. Chem., 37A, 747 (1998).
  • Takei, Nishibayashi, Yoshlaki. Chemical Communications, 22, 2360 (2001).
  • A.Z. El-Sonbati, A.A. El-Bindary, M.A. Diab and S.A. Mazrouh, Monatshefte Fur Chemie. 124, 793 (1993).
  • K.T. Joshi, A.M. Pancholi, K.S. Pandya, K.K. Singh and A.S. Thakar, Asian J. Chem., 22, 7706 (2010).
  • A.S. Thakar, K.K. Singh, K.T. Joshi, A.M. Pancholi and K.S. Pandya, E-Journal of Chemistry, 7, 1407 (2010).
  • K.T. Joshi, A.S. Thakar, A.M. Pancholi and K.S. Pandya, E-Journal of Chemistry, 8, 1556 (2011).
  • A.S. Thakar, K.T. Joshi, A.M. Pancholi and K.S. Pandya, E-Journal of Chemistry, 8, 1750 (2011).
  • K.T. Joshi, A.M. Pancholi, K.S. Pandya and A.S. Thakar, J. Chem. Pharm. Res., 3, 741 (2011).
  • K.T. Joshi, A.M. Pancholi, K.S. Pandya and A.S. Thakar, Int. J. Res. Chem. Environ., 1, 63 (2011).
  • L.J. Bellamy, The infrared Spectra of Complex Molecules, Chapman and Hall, London p. 108 (1975).
  • I.A. Patel and B.T. Thaker, Indian J. Chem., 38A, 431 (1999).
  • A.K. Rana and J.R. Shah, Indian J. Chem., 20A, 615 (1981).
  • K. Nakamoto, Infrared spectra of Inorganic and coordination Compounds, John Willey, New York (1963).
  • D.M. Adans, Metal-Ligand and related Vibration, p. 310 Edward Arnold, London (1967).
  • E.C. Ocafor, J. Inorg. Nucl. Chem., 42, 1155 (1980).
  • S.M.F. Rahman, J. Ahmad and M.M. Haq, J. Inorg. Nucl. Chem., 35, 1011 (1973).
  • B.N. Figgis, Introduction to ligand fields, Interscience, New York (1966).
  • P.P. Dholakiya and M.N. Patel, Synth. React. Inorg. Met.-Org and Nano-met. Chem., 32, 4 (2000).
  • B.A. Uzoukwu, K. Gloe and H. Duddeck, Indian J. Chem., 37B, 1180 (1998).
  • R.L. Dutta and A. Shyamal, Element of Magneto Chemistry, 2nd edn. Affiliated East-West press, New Delhi (1982).
  • F.L. Mani, J. Inorg. Nucl. Chem., 15, 297 (1979).
  • R.C. Agarwal, N.K. Singh and R.P. Singh, Synth. React. Inorg. Met.- Org. Chem., 14, 637 (1948).
  • A.C. Fabretti, C.G. Franchini, C.P. Preti and G.Toshi, Can. J. Chem., 55, 344 (1977).
  • J. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20, 429 (1964).
  • D.K. Rastogi and K.C. Sharma, J. Inorg. Nucl. Chem., 36, 2219 (1974).
  • C.K. Modi, S.H. Patel and M.N. Patel, J. Therm. Anal. Cal., 73, 347 (2003).
  • P.B. Pansuriya, P. Dhandhukia, V. Thakkar and M.N. Patel, J. Enz. Inhib. Med. Chem., 22, 477 (2007).
  • N.M. El-Metwally, I.M. Gabr, A.M. Shallaby and A.A. El-Asmy, J. Coord. Chem., 58, 1145 (2005).
  • N. Deb, S.D. Barudh, N. Sen Savma and N.N. Das, Thermochim. Acta, 53, 320 (1998)
  • A.A. Soliman, J. Therm. Anal. Cal., 63, 221 (2001).
  • A.F. Petrovic, D.M. Petrovic, V.M. Zeovac and M. Budimir, J. Thermal. Anal. Cal., 58, 589 (1999).
  • B.S. Grag, P.K. Singh and S.K. Grag, Synth. React. Inorg. Met.-Org. Chem., 17, 923 (1987).
  • C.K. Modi, S.H. Patel and M.N. Patel, J. Therm. Anal. Cal., 87, 441 (2007).
  • G.G. Mohamed and Z.H. Abd El-Wahab, J. Therm. Anal. Cal., 73, 347 (2003).
  • G.G. Mohamed, F.A. Nour, El-Dien, E.A. Nadia and El-Gamel, J. Therm. Anal. Cal., 67, 135 (2002).
  • H. Nora and Al-Sha’alan, Molecules, 12, 1080 (2007).
  • Y. Anjaneyulu and R.P. Rao, Synth. React. Inorg. Met. Org. Chem., 16, 257 (1986).
  • L. Mishra and V.K. Singh, Indian J. Chem., 32A, 446 (1993).

Abstract Views: 262

PDF Views: 2




  • Synthesis, Characterization, and Antibacterial Activity of some Chelates in O,n-donor Coordination Pattern Involving Schiff Bases Derived from 4-acetyl/benzoyl-1-(4'-nitrophenyl)-3-methyl-2-pyrazolin-5-one and Sulfamoxole

Abstract Views: 262  |  PDF Views: 2

Authors

A.S Thakar
School of Chemistry, University of KwaZulu-Natal, Durban, 4000
H.B Friedrich
School of Chemistry, University of KwaZulu-Natal, Durban, 4000
K.T Joshi
Department of Chemistry, Navjivan Science College, Dahod, 389 151, Gujarat, India

Abstract


The condensation reactions of 4-Acetyl/benzoyl-1-(4'-nitrophenyl)-3-methyl-2-pyrazolin-5-ones condensed with sulfamoxole to form bidentate NO donor Schiff bases were studied. The prepared Schiff base ligands were further utilized for the formation of metal chelates having the general formula [ML2.2H2O] where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and L = Ligand L1 and Ligand L2. These new compounds were characterized by conductance measurements, magnetic susceptibility measurements, elemental analysis, thermo gravimetric analysis, electronic and infrared spectroscopy. Both Schiff base ligands were found to have a mono-anionic bidentate nature and octahedral geometry was assigned to all metal complexes. All the complexes contained coordinated water which was lost at 141- 160 °C. These compounds were also screened for their in-vitro antibacterial activity against three bacterial species, namely; Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The metal complexes were found to have greater antibacterial activity than the Schiff base ligands

Keywords


Pyrazolin-5-one, Sulfamoxole, Schiff Base, Transition Metals, Spectroscopy, Antibacterial Activity

References