Geopolymers have several applications and concrete is one of the materials that can be produced with geopolymer as binder. Since industrial byproducts/wastes such as fly ash, iron slag, micronized biomass silica, silica fume, red mud, etc. can be used as a binder instead of Portland cement, geopolymer concrete (GPC) has generated lot of interest among the scientific and engineering community. This has also resulted in reduced carbon footprint of concrete and an effective method of disposing industrial waste. In this study GPC with a blend of class-f fly ash and ground granulated blast furnace slag as binder has been developed, and its flexural and fracture characteristics have been studied. The GPC developed has a 28-day compressive strength in the range 40-50 MPa. Incorporation of steel fibres resulted in increased flexural strength, enhanced fracture properties and ductility. The residual strength of steel fibre reinforced GPC was also determined in the study.
Keywords
Alkali Activators, Fracture Behaviour, Fly Ash, Geopolymer Concrete, Iron Slag, Steel Fibres.
User
Font Size
Information