The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


This communication discusses the optimization of key factors for the enhanced bio-hydrogen production from water hyacinth. Three critical factors inoculums age (18-24 h), inoculums volume (20-80 ml/l) and concentration of sulphuric acid (0.5-2.0%) were optimized by response surface methodology (RSM) with central composite design (CCD) for better production. RSM analysis showed that all three factors significantly influenced hydrogen production. The optimum hydrogen production was 705 ml/l obtained with 21 h old bacterial culture, 50 ml/l inoculums with 1.25% sulphuric acid pre-treatment. The hydrogen concentration produced by Clostridium acetobutylicum NCIM 2877 was enhanced after using RSM. The results obtained indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by pre-treatment of low-cost organic substrate; water hyacinth using dark fermentation methods may be one of the most promising approaches.

Keywords

Central Composite Design, Clostridium acetobutylicum NCIM 2877, Hydrogen Production, Response Surface Methodology, Water-Hyacinth.
User
Notifications
Font Size