The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


We propose a solution for automatic co-registration of LISS-4 MX radiometrically conditioned multi-spectral images issue by considering an optimization problem in which mutual information-based approach is used. Co-registration of multi-spectral images from the same sensor may also be a tough problem to tackle, whenthe payload imaging geometry is complex. The multi-spectral images acquired by ISRO Resources at-1/2 LISS-4 MX class of sensors pose such problems and demand an automatic registration solution for system corrected product generation to cater to user needs. Optical remote sensing image registration is assisted by image geo-referencing or navigation information along with components such as feature detection, matching, correspondence, and resampling the input image to the reference geometry. Intensity-based methods employ an iterative registration framework,where similarity metric based image matching and correspondence is refined to find out optimum transform parameters. We could successfully employ mutual information-based adaptive stochastic gradient descent optimization algorithm to do sub-pixel level satellite image registration tasks by a careful choice of parameters and models related to metric, transform, optimizer, and interpolator in a robust image registration framework which is automatic for different terrain data. The performance is also compared to a recent scale invariant feature transform (SIFT)-based registration method.

Keywords

Image Registration, LISS-4, Mutual Information, Optimization.
User
Notifications
Font Size