Open Access Open Access  Restricted Access Subscription Access

Radiocarbon Analysis of the Indian Banyan (Ficus benghalensis L.) At Narora


Affiliations
1 Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania., Romania
2 Botanical Survey of India, Central Regional Centre, 10 Chatham Lines, Prayagraj 211 002, India., India
3 Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania; Babeş-Bolyai University, Raluca Ripan Institute for Research in Chemistry, 30 Fantanele, RO-400294 Cluj-Napoca, Romania., Romania
4 iThemba LABS, Private Bag 11, WITS 2050, Johannesburg, South Africa., South Africa
 

This article describes the radiocarbon analysis of the large Indian banyan (Ficus benghalensis) at Narora, Uttar Pradesh (UP). It was discovered during floristic surveys in the Upper Ganga Ramsar site in UP and ranks as the tenth largest banyan tree in the world with its 4069 sq. m crown spread. The tree has a unique architecture, with just four prop roots supporting the main stem. The oldest sample was found to be 346 ± 40 years bp, which corresponds to a calibrated age of 430 ± 35 cal years. The radiocarbon dating results indicate an age of 450 ± 50 years for the Indian banyan at Narora. This age represents the oldest accurate dating result for the species. Several protection measures are included to ensure the long-term survival of this archaic tree.

Keywords

Age Determination, Ams Radiocarbon Dating, Ficus benghalensis, Tree Conservation, Upper Ganga Ramsar Site.
User
Notifications
Font Size

  • Sinha, K. K., Figs. In Encyclopedia of Food Sciences and Nutrition (eds Caballero, B., Trugo, L. and Finglas, P. M.), Academic Press, London, UK, 2003, pp. 2394–2399.
  • Rahman, A. H. M. M. and Khanom, A., Taxonomic and ethno-medicinal study of species from Moraceae (Mulberry) family in Bangladesh flora. Res. Plant Sci., 2013, 1, 53–57.
  • Murugesu, S., Selamat, J. and Perumal, V., Phytochemistry, phar-macological properties and recent applications of Ficus bengha-lensis and Ficus religiosa. Plants, 2021, 10, 2749.
  • Plants of the World online catalogue; https://powo.science.kew.org/ (accessed on 3 May 2022).
  • Gopukumar, S. T. and Praseetha, P. K., Ficus benghalensis Linn. – the sacred Indian Medicinal Tree with potent pharmacological rem-edies. Int. J. Pharm. Sci. Rev. Res., 2015, 32(37), 223–227.
  • Tripathi, R., Kumar, A., Kumar, S., Prakash, S. and Singh, A. K., Ficus benghalensis Linn.: a tribal medicine with vast commercial potential. Indian J. Agric. Sci., 2019, 1(3), 95–102.
  • Tripathi, I. P. and Sharma, R., Bio-chemical activities of Ficus benghalensis – a review. Int. J. Curr. Res., 2016, 8(7), 34765–34768.
  • Bar-Ness, Y. D., The World’s largest trees? Cataloguing India’s gi-ant banyans, landmark trees of India. Outreach Ecology project; https://outreachecology.com/landmark/resources/the-largest-trees-in-the-world/#:~:text=The%20World's%20Largest%20Trees%3F,squ-are%20meters%E2%80%93%20almost%20two%20hectares (acces-sed on 20 May 2022).
  • Krishen, P., Trees of Delhi: A Field Guide, Dorling Kindersley Pvt Ltd, Delhi, India, 2006, p. 139.
  • Moustafa A. A., Abd El-Wahab R. H., Zaghloul M. S., Salman A. and Ahmed A. A., Age structure of Ficus benghalensis L.: a threat-ened introduced population in Ismailia, Egypt. Life Sci. J., 2014, 11(11), 90–97.
  • Suresh, H. S., Do trees tell us about the past? Resonance, 2012, 17, 33–43.
  • Shah, S. K. and Mehrotra, N., Tree-ring studies of Toona ciliata from subtropical wet hill forests of Kalimpong, eastern Himalaya. Dendrochronologia, 2017, 46, 46–55.
  • Upadhyay, K. K., Shah, S. K., Roy, A., Mehrotra, N. and Tripathi, S. K., Dendrochronological potential of Tectona grandis, Pinus kesiya and Quercus serrata from Mizoram, northeast India. Indian J. Ecol., 2019, 46(4), 722–728.
  • Chaudhary, V., Bhattacharyya, A., Guiot, J., Shah, S. K., Srivastava, S. K., Edouard, J.-L. and Thomas, A., Reconstruction of August– September temperature in North–Western Himalaya since AD 1773, based on tree-ring data of Pinus wallichiana and Abies pindrow. In Holocene: Perspectives, Environmental Dynamics and Impact Events (ed. Kotila, B. S.), Nova Science Publisher, New York, USA, 2013, pp. 145–156.
  • Malik, R. and Raman, S., June–July temperature reconstruction of Kashmir Valley from tree rings of Himalayan pindrow Fir. Atmos-phere, 2021, 12(3), 410.
  • Pandey, U., Shah, S. K. and Mehrotra, N., Tree-ring studies from Kashmir Valley: present status and future perspective. Geophytology, 2016, 46, 207–220.
  • Patrut, A. et al., The growth stop phenomenon of baobabs (Adansonia spp.) identified by radiocarbon dating. Radiocarbon, 2017, 59, 35– 448.
  • Bormann, F. H. and Berlyn, G. (eds), Age and growth rate of tropi-cal trees: new directions for research. In School of Forestry and Environmental Studies Bulletin 6, Yale University, Connecticut, USA, 1981.
  • Pumijumnong, N., Dendrochronology in Southeast Asia. Trees, 2013, 27, 343–358.
  • Fichtler, E., Dendroclimatology using tropical broad-leaved tree species – a review. Erdkunde, 2017, 71(1), 5–22.
  • Tarelkin, Y., Delvaux, C., De Ridder, M., El Berkani, T., De Can-nière, C. and Beeckman, H., Growth-ring distinctness and boundary anatomy in tropical trees. IAWA J., 2016, 37, 275–294.
  • López, L. and Villalba, R., Reliable estimates of radial growth for eight tropical species based on wood anatomical patterns. J. Trop. For. Sci., 2016, 28(2), 139–152.
  • Xiong, L., Okada, N. and Fujiwara, T., The dendrochronological potential of ten species in the Three Gorges Reservoir region of China. IAWA J., 2000, 21(2), 181–196.
  • Lancaster, W., Lancaster, F. and Bridge, M., Tree cores from Ra’s al-Khaimah. In Proceedings of the Seminar for Arabian Studies, Papers from the Thirty Seventh Meet, London, UK, 2004, vol. 34, pp. 147–156.
  • Xu, C., Sano, M., Yoshimura, K. and Nakatsuka, T., Oxygen isotopes as a valuable tool for measuring annual growth in tropical trees that lack distinct annual rings. Geochem. J., 2014, 48, 371–378.
  • Worbes, M., One hundred years of tree-ring research in the trop-ics – a brief history and an outlook to future challenges. Dendro-chronologia, 2002, 20, 217–231.
  • Fichtler, E., Clark, D. A. and Worbes, M., Age and long-term growth of trees in an old-growth tropical rain forest, based on anal-yses of tree rings and 14 C. Biotropica, 2003, 35, 306–317.
  • Patrut, A., von Reden, K. F., Danthu, P., Leong Pock-Tsy, J.-M., Patrut, R. T. and Lowy, D. A., Searching for the oldest baobab of Madagascar: radiocarbon investigation of large Adansonia rubro-stipa trees. PLoS ONE, 2015, 10, e0121170.
  • Patrut, A., Woodborne, S., Patrut, R. T., Rakosy, L., Lowy, D. A., Hall, G. and von Reden, K. F., The demise of the largest and oldest African baobabs. Nature Plants, 2018, 4, 423–436.
  • Poussart, P. M., Myneni, S. C. B. and Lanzirotti, A., Tropical den-drochemistry: a novel approach to estimate age and growth from ringless trees. Geoophys. Res. Lett., 2006, 33, L17711.
  • Garg, A., Singh, P. and Garg, K., World’s tenth largest banyan tree at Narora in Upper Ganga Ramsar site, Uttar Pradesh, India. Curr. Sci., 2016, 111(5), 778–779.
  • Garg, A. and Singh, V., Siddhwari sacred grove in Upper Ganga Ramsar site of Uttar Pradesh. Curr. Sci., 2013, 105(8), 1039–1040.
  • Patrut, A. et al., Fire history of a giant African baobab evinced by radiocarbon dating. Radiocarbon, 2010, 52, 717–726.
  • Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R. and Water-house, J. S., An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem. Geol., 1997, 136, 313–317.
  • Sofer, Z., Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Anal. Chem., 1980, 52, 1389–1391.
  • Vogel, J. S., Southon, J. R., Nelson, D. E. and Brown, T. A., Per-formance of catalytically condensed carbon for use in accelerator mass-spectrometry. Nucl. Instrm. Methods B, 1984, 5, 289–293.
  • Mbele, V. L., Mullins, S. M., Winkler, S. R. and Woodborne, S., Acceptance tests for AMS radiocarbon measurements at iThemba LABS, Gauteng, South Africa. Phys. Procedia, 2017, 90, 10–16.
  • Reimer, P. et al., The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 2020, 62, 725–757.
  • Bronk Ramsey, C., Bayesian analysis of radiocarbon dates. Radio-carbon, 2009, 51, 337–360.
  • Patrut, A., Patrut, R. T., Rakosy, L., Bodis, J., Lowy, D., Forizs, E. and von Reden, K. F., African baobabs with double closed ring-shaped structures and two separate false cavities: radiocarbon in-vestigation of the baobab of Golconda Fort. Stud. UBB Chem., 2016, LXI, 21–30.
  • Patrut, A., Patrut, R.T, Danthu, P., Leong Pock-Tsy, J.-M., Rakosy, L., Lowy, D. A. and von Reden, K. F., AMS radiocarbon dating of large za baobabs (Adansonia za) of Madagascar. PLoS ONE, 2016, 11(1), e0146977.
  • Patrut, A. et al., AMS radiocarbon dating of very large Grandidier’s baobabs (Adansonia grandidieri). Nucl. Instrum. Methods B, 2015, 361, 591–598.
  • Patrut, A., Garg, A., Woodborne, S., Patrut, R. T., Rakosy, L., Ratiu, I. A. and Lowy, D. A., Radiocarbon dating of two old African bao-babs from India. PLoS ONE, 2020, 15, e0227352.
  • Garg, A., Patrut, R. T., Patrut, A., Woodborne, S. and Rakosy, L., Radiocarbon dating and status of the oldest extant Ceylon iron wood (Manilkara hexandra) in the riverine Ramsar site of India. Curr. Sci., 2021, 120(3), 562–566.
  • Lindenmayer, D. B., Conserving large old trees as small natural features. Biol. Conserv., 2017, 211, 51–59.
  • Lindenmayer, D. B., Laurence, W. F. and Franklin, J. F., Global decline in large old trees. Science, 2012, 338, 1305–1306.
  • Lindenmayer, D. B. et al., New policies for old trees: averting a global crisis in a keystone ecological structure. Conserv. Lett., 2013, 7(1), 61–69.
  • Bennett, A. C., Mcdowell, N. G., Allen, C. D. and Anderson-Teixeira, K. J., Larger trees suffer most during drought in forests worldwide. Nature Plants, 2015, 1(10), 15139.

Abstract Views: 222

PDF Views: 117




  • Radiocarbon Analysis of the Indian Banyan (Ficus benghalensis L.) At Narora

Abstract Views: 222  |  PDF Views: 117

Authors

Roxana T. Patrut
Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania., Romania
Arti Garg
Botanical Survey of India, Central Regional Centre, 10 Chatham Lines, Prayagraj 211 002, India., India
Adrian Patrut
Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania; Babeş-Bolyai University, Raluca Ripan Institute for Research in Chemistry, 30 Fantanele, RO-400294 Cluj-Napoca, Romania., Romania
Stephan Woodborne
iThemba LABS, Private Bag 11, WITS 2050, Johannesburg, South Africa., South Africa
Laszlo Rakosy
Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania., Romania
Ileana-Andreea Ratiu
Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania; Babeş-Bolyai University, Raluca Ripan Institute for Research in Chemistry, 30 Fantanele, RO-400294 Cluj-Napoca, Romania., Romania

Abstract


This article describes the radiocarbon analysis of the large Indian banyan (Ficus benghalensis) at Narora, Uttar Pradesh (UP). It was discovered during floristic surveys in the Upper Ganga Ramsar site in UP and ranks as the tenth largest banyan tree in the world with its 4069 sq. m crown spread. The tree has a unique architecture, with just four prop roots supporting the main stem. The oldest sample was found to be 346 ± 40 years bp, which corresponds to a calibrated age of 430 ± 35 cal years. The radiocarbon dating results indicate an age of 450 ± 50 years for the Indian banyan at Narora. This age represents the oldest accurate dating result for the species. Several protection measures are included to ensure the long-term survival of this archaic tree.

Keywords


Age Determination, Ams Radiocarbon Dating, Ficus benghalensis, Tree Conservation, Upper Ganga Ramsar Site.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi10%2F1175-1180