An embedded system with flexi force sensors was developed to evaluate the actuating force required for the control levers of the walk-behind type paddy transplanter in static and field conditions. For measuring the force, three flexi force sensors were attached to the distal phalanges of the thumb, index finger and middle finger of the operator, so that the sensors could measure the force applied for engaging or disengaging the levers. These sensors were interfaced with Arduino Uno through a signal conditioning circuit, and the measured forces were recorded with the help of an SD card module. A maximum of 17.00 ± 5.00 N force was required to control the accelerator lever, while the left and right steering levers required an actuating force of 17.02 ± 5.58 N. For engaging brakes/clutch, lesser force (15.20 ± 4.87 N) was required compared to disengaging the lever (31.74 ± 9.80 N) under actual field conditions. To start the transplanting mechanism, a much higher actuating force (68.00 ± 12.23 N) was required; however, to stop the mechanism, a comparatively smaller force (19.60 ± 10.26 N) was required. For controlling the gear shift lever in forward and reverse positions, a maximum actuating force of 28.14 ± 5.72 N was required
Keywords
Actuating Force, Flexi Force Sensor, Levers, Remote-Controlled Paddy Transplanter.
User
Font Size
Information