The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


General-purpose microprocessors are augmented with short-vector instruction extensions in order to simultaneously process more than one data element using the same operation. This type of parallelism is known as data-parallel processing. Many scientific, engineering, and signal processing applications can be formulated as matrix operations. Therefore, accelerating these kernel operations on microprocessors, which are the building blocks or large high-performance computing systems, will definitely boost the performance of the aforementioned applications. In this paper, we consider the acceleration of the matrix transpose operation using the 256-bit Intel advanced vector extension (AVX) instructions. We present a novel vector-based matrix transpose algorithm and its optimized implementation using AVX instructions. The experimental results on Intel Core i7 processor demonstrates a 2.83 speedup over the standard sequential implementation, and a maximum of 1.53 speedup over the GCC library implementation. When the transpose is combined with matrix addition to compute the matrix update, B + AT, where A and B are squared matrices, the speedup of our implementation over the sequential algorithm increased to 3.19.

Keywords

Matrix Transpose, Vector Instructions, Streaming and Advanced Vector Extensions, Data-Parallel Computations.
User
Notifications
Font Size