The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


This paper presents a new approach for mapping and scheduling task graphs for heterogeneous hardware/software computing systems using heuristic search. Task mapping and scheduling are vital in hardware/software codesign and previous approaches that treat them separately lead to suboptimal solutions. In this paper, we propose two techniques to enhance the speedup of mapping/scheduling solutions: (1) an integrated technique combining task clustering, mapping, and scheduling, and (2) a multiple neighborhood function strategy. Our approach is demonstrated by case studies involving 40 randomly generated task graphs, as well as six applications. Experimental results show that our proposed approach outperforms a separate approach in terms of speedup by up to 18.3% for a system with a microprocessor, a floating-point digital signal processor, and an FPGA.

Keywords

Hardware/software Codesign, Heuristic Search, Multiple Neighborhood Functions
User
Notifications
Font Size