The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The recent technological progress in acquisition, modeling and processing of 3D data leads to the proliferation of a large number of 3D objects databases. Consequently, the techniques used for content based 3D retrieval has become necessary. In this paper, we introduce a new method for 3D objects recognition and retrieval by using a set of binary images CLI (Characteristic level images). We propose a 3D indexing and search approach based on the similarity between characteristic level images using Hu moments for it indexing. To measure the similarity between 3D objects we compute the Hausdorff distance between a vectors descriptor. The performance of this new approach is evaluated at set of 3D object of well known database, is NTU (National Taiwan University) database.

Keywords

3D Shape Descriptor, Retrieval, 3D Zernike Moments, Hu Moments Invariants, Level Images.
User
Notifications
Font Size