The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


EM algorithm is a common algorithm in data mining techniques. With the idea of using two iterations of E and M, the algorithm creates a model that can assign class labels to data points. In addition, EM not only optimizes the parameters of the model but also can predict device data during the iteration. Therefore, the paper focuses on researching and improving the EM algorithm to suit the LiDAR point cloud classification. Based on the idea of breaking point cloud and using the scheduling parameter for step E to help the algorithm converge faster with a shorter run time. The proposed algorithm is tested with measurement data set in Nghe An province, Vietnam for more than 92% accuracy and has faster runtime than the original EM algorithm.

Keywords

LiDAR, EM Algorithm, Scheduling Parameter, LiDAR Point Elevation, GMM Model.
User
Notifications
Font Size