Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Generalized Integral Transform and Fractional Calculus Involving Extended pRq(α β Ζ) Function


Affiliations
1 Department of Applied Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, India
     

   Subscribe/Renew Journal


Generalized Integral Transform and Fractional Calculus Involving Extended pRq(α β Ζ) Function

Keywords

Generalized hypergeometric function, Wright hypergeometric function, Generalized integral transforms, k-Pochhammer symbol, Pathway fractional hypergeometric integral operator.
Subscription Login to verify subscription
User
Notifications
Font Size


  • R. Desai and A. K. Shukla, Some results on function pRq( , ; z), J. Math. Anal. Appl., 448 (2017), 187–197.
  • R. Desai and A. K. Shukla, Note on pRq( , ; z) function, J. Indian Math. Soc., 88(3-4) (2021), 288–297.
  • R. D´?az and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192.
  • A. Erd´elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill Book Company, New York, 1954.
  • A. A. Kilbas and N. Sebastian, Generalized fractional differentiation of Bessel function of the first kind, Math. Balkanica (New Ser.) 22 (2008), 323-346.
  • A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, Phys. A., 375 (2007), 110–122.
  • S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal. 12(3) (2009), 237–252.
  • D. H. Nair, On a class of fractional integral operator through pathway idea, Proc. 12th Annual Conf. SSFA, 12 (2013), 91–109.
  • T. Pohlen, The Hadamard Product and Universal Power Series. Ph.D. Thesis, Universit¨at Trier, Trier, Germany, 2009.
  • T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
  • E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
  • M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978), 135–143.
  • S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordan and Breach, New York, 1993.
  • M. Sharma and R. Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), 449–452.
  • K. Sharma, Application of fractional calculus operators to related areas, Gen. Math. Notes, 7(1) (2011), 33–40.
  • N. Virchenko, On the generalized conuent hypergeometric function and its applications, Fract. Calc. Appl. Anal., 9(2) (2006), 101–108.
  • N. Virchenko, On some generalizations of classical integral transforms, Mathematica Balkanica, 26(1-2) (2012), 257–264.
  • E. M. Wright, On the coefficient of power series having exponential singularities, J. Lond. Math. Soc., 5 (1933), 71–79.

Abstract Views: 220

PDF Views: 0




  • Generalized Integral Transform and Fractional Calculus Involving Extended pRq(α β Ζ) Function

Abstract Views: 220  |  PDF Views: 0

Authors

Ankit Pal
Department of Applied Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, India
R. K. Jana
Department of Applied Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, India
A. K. Shukla
Department of Applied Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, India

Abstract


Generalized Integral Transform and Fractional Calculus Involving Extended pRq(α β Ζ) Function

Keywords


Generalized hypergeometric function, Wright hypergeometric function, Generalized integral transforms, k-Pochhammer symbol, Pathway fractional hypergeometric integral operator.

References





DOI: https://doi.org/10.18311/jims%2F2022%2F29310