Open Access
Subscription Access
Open Access
Subscription Access
Generalized Integral Transform and Fractional Calculus Involving Extended pRq(α β Ζ) Function
Subscribe/Renew Journal
Generalized Integral Transform and Fractional Calculus Involving Extended pRq(α β Ζ) Function
Keywords
Generalized hypergeometric function, Wright hypergeometric function, Generalized integral transforms, k-Pochhammer symbol, Pathway fractional hypergeometric integral operator.
Subscription
Login to verify subscription
User
Font Size
Information
- R. Desai and A. K. Shukla, Some results on function pRq( , ; z), J. Math. Anal. Appl., 448 (2017), 187–197.
- R. Desai and A. K. Shukla, Note on pRq( , ; z) function, J. Indian Math. Soc., 88(3-4) (2021), 288–297.
- R. D´?az and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179–192.
- A. Erd´elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill Book Company, New York, 1954.
- A. A. Kilbas and N. Sebastian, Generalized fractional differentiation of Bessel function of the first kind, Math. Balkanica (New Ser.) 22 (2008), 323-346.
- A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, Phys. A., 375 (2007), 110–122.
- S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal. 12(3) (2009), 237–252.
- D. H. Nair, On a class of fractional integral operator through pathway idea, Proc. 12th Annual Conf. SSFA, 12 (2013), 91–109.
- T. Pohlen, The Hadamard Product and Universal Power Series. Ph.D. Thesis, Universit¨at Trier, Trier, Germany, 2009.
- T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
- E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
- M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978), 135–143.
- S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordan and Breach, New York, 1993.
- M. Sharma and R. Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), 449–452.
- K. Sharma, Application of fractional calculus operators to related areas, Gen. Math. Notes, 7(1) (2011), 33–40.
- N. Virchenko, On the generalized conuent hypergeometric function and its applications, Fract. Calc. Appl. Anal., 9(2) (2006), 101–108.
- N. Virchenko, On some generalizations of classical integral transforms, Mathematica Balkanica, 26(1-2) (2012), 257–264.
- E. M. Wright, On the coefficient of power series having exponential singularities, J. Lond. Math. Soc., 5 (1933), 71–79.
Abstract Views: 221
PDF Views: 0