Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Finite Group Actions on Kan Complexes


Affiliations
1 Stat-Math Unit, Indian Statistical Institute, Kolkata 700108, India
2 Department of Mathematics and Statistics, Indian Institute of Technology-Kanpur, Kanpur 208016, India
     

   Subscribe/Renew Journal


We study simplicial action of groups on one vertex Kan complexes. We show that every semi-direct product of the fundamental group of an one vertex Kan complex with a finite group can be simplicially realized. We also calculate the cohomology of the fixed point set of a finite p-group action on an one vertex aspherical Kan complex.

Keywords

Kan Complexes, Covering Spaces, Group Actions.
Subscription Login to verify subscription
User
Notifications
Font Size


  • H. Cartan, Sur la cohomologie des espaces ou opere un groupe: etude d'un anneau differentiel ou opere un groupe: etude d'un anneau differential ou opere un groupe, C. R. Acad. Sci. Paris, 226, (1948), 303-305.
  • P. E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga.), 1969, Markham, Chicago, Ill., 1970, 227-264.
  • P. E. Conner and F. Raymond, Manifolds with few periodic homeomorphisms. In Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part II, Lecture Notes in Math., Vol. 299, Berlin, 1972, Springer, 1-75.
  • P. E. Conner and Frank Raymond. Realizing finite groups of homeomorphisms from homotopy classes of self-homotopy-equivalences. In Manifolds-Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), Univ. Tokyo Press, Tokyo, 1975, 231-237.
  • P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83(1), (1977), 36-85.
  • P. E. Conner, F. Raymond, and P. J. Weinberger, Manifolds with no periodic maps. Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part II, Lecture Notes in Math., Vol. 299, Berlin, 1972. Springer, 36-85.
  • V. K. A. M. Gugenheim, On a theorem of E. H. Brown. Illinois J. Math., 4, 1960, 292-311.
  • P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Mathematics, Vol 174, Birkhauser Verlag, Basel, 1999.
  • J. P. May, A generalization of Smith theory, Proc. Amer. Math. Soc., 101(4), (1987), 728-730.
  • J. P. May, Kan complexes, Covering spaces, group action, Simplicial objects in algebraic topology, Reprint of the 1967 original, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992.
  • P. A. Smith, Transformations of finite period, Ann. of Math. (2), 39(1), (1938), 127-164.

Abstract Views: 268

PDF Views: 0




  • Finite Group Actions on Kan Complexes

Abstract Views: 268  |  PDF Views: 0

Authors

Goutam Mukherjee
Stat-Math Unit, Indian Statistical Institute, Kolkata 700108, India
Swagata Sarkar
Stat-Math Unit, Indian Statistical Institute, Kolkata 700108, India
Debasis Sen
Department of Mathematics and Statistics, Indian Institute of Technology-Kanpur, Kanpur 208016, India

Abstract


We study simplicial action of groups on one vertex Kan complexes. We show that every semi-direct product of the fundamental group of an one vertex Kan complex with a finite group can be simplicially realized. We also calculate the cohomology of the fixed point set of a finite p-group action on an one vertex aspherical Kan complex.

Keywords


Kan Complexes, Covering Spaces, Group Actions.

References