Open Access Open Access  Restricted Access Subscription Access

Enhancing SiN Thermo-Optic Effect


Affiliations
1 Department of Telecommunication Engineering, Mehran University of Engineering & Technology Jamshoro 76062 Sindh, Pakistan
 

In this paper, we improve the TOE (Thermo-optic Efficiency) of SiN using SiOC as upper clad layer to simulate the waveguide and analyzed the refractive index by using MEEP/Beam-prop software for superior experimental results. In order to create photonic integrated circuits, a number of material platforms have been researched. (PICs). The semiconductors (Si, InP, GaAS) are not fulfil the complete requirement of photonics. So, we use dielectrics SiON, SiO2, SiN, and SiOC at 1550 nm become well-established platforms lowest losses possible, they suffer from relatively lower coefficient of themo-optic, about 10-5 / C. Silicon Nitride (SiN) has low TOC 2×10-5 / K and the recently silicon oxycarbide (SiOC) has been shown to highest TOC among the dielectrics 4 × 10-4 / K.

Keywords

Integrated Photonics, Thermo-Optic Effect, Silicon Nitride, Silicon Oxycarbide, Optical Waveguides.
User
Notifications
Font Size

  • Memon, F. A., Morichetti, F. and Melloni, A. (2017) ‘Waveguiding light into silicon oxycarbide’, Applied Sciences (Switzerland), 7(6), pp. 1–11. doi: 10.3390/app7060561.
  • Muñoz, P. et al. (2017) ‘Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications’, Sensors (Switzerland), 17(9), pp. 1–25. doi: 10.3390/s17092088.
  • Bogaerts, W., Fiers, M. and Dumon, P. (2014) ‘Design Challenges in Silicon Photonics’, IEEE Journal on Selected Topics in Quantum Electronics, 20(4). doi: 10.1109/JSTQE.2013.2295882.
  • Blumenthal, D. J. et al. (2018) ‘Silicon Nitride in Silicon Photonics’, Proceedings of the IEEE, 106(12), pp. 2209–2231. doi: 10.1109/JPROC.2018.2861576.
  • Memon, F. A. et al. (2020) ‘Silicon Oxycarbide Platform for Integrated Photonics’, Journal of Lightwave Technology, 38(4), pp. 784–791. doi: 10.1109/JLT.2019.2948999.
  • Atabaki, A.H., Hosseini, E.S., Eftekhar, A.A., Yegnanarayanan, S. and Adibi, A., 2010. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Optics express, 18(17), pp.18312-18323.
  • Wilmart, Q., El Dirani, H., Tyler, N., Fowler, D., Malhouitre, S., Garcia, S., Casale, M., Kerdiles, S., Hassan, K., Monat, C. and Letartre, X., 2019. A versatile silicon-silicon nitride photonics platform for enhanced functionalities and applications. Applied Sciences, 9(2), p.255.
  • Zhuang, L., Roeloffzen, C.G., Hoekman, M., Boller, K.J. and Lowery, A.J., 2015. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), pp.854-859.
  • Huang, X., Christopher, B., Chai, S., Xie, X., Luo, S., Liang, S. and Pan, A., 2021. Cowpea-like N-Doped Silicon Oxycarbide/Carbon Nanofibers as Anodes for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 4(2), pp.1677-1686.
  • David, L., Bhandavat, R., Barrera, U. and Singh, G., 2016. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nature communications, 7(1), pp.1-10.
  • Iftikhar, P. and Memon, F.A., 2021. Efficient Thermal Tunning of Photonic Devices. International Journal of Advanced Studies in Computers, Science and Engineering, 10(2), pp.1-7.
  • Ford, B., Tabassum, N., Nikas, V. and Gallis, S., 2017. Strong photoluminescence enhancement of silicon oxycarbide through defect engineering. Materials, 10(4), p.446.
  • Xie, Y., Shi, Y., Liu, L., Wang, J., Priti, R., Zhang, G., Liboiron-Ladouceur, O. and Dai, D., 2020. Thermally-reconfigurable Silicon Photonic Devices and Circuits. IEEE Journal of Selected Topics in Quantum Electronics, 26(5), pp.1-20.
  • Memon, F.A., Morichetti, F. and Melloni, A., 2018, May. Integrated photonic devices with silicon oxycarbide. In Fiber Lasers and Glass Photonics: Materials through Applications (Vol. 10683, p. 106833I). International Society for Optics and Photonics.
  • Memon, F.A., Morichetti, F., Abro, M.I., Iseni, G., Somaschini, C., Aftab, U. and Melloni, A., 2017. Synthesis, Characterization and Optical Constants of Silicon Oxycarbide. In EPJ Web of Conferences (Vol. 139, p. 00002). EDP Sciences.
  • Anani, M., Mathieu, C., Lebid, S., Amar, Y., Chama, Z. and Abid, H., 2008. Model for calculating the refractive index of a III–V semiconductor. Computational materials science, 41(4), pp.570-575.
  • Prucnal, S., Sun, J.M., Skorupa, W. and Helm, M., 2007. Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu. Applied physics letters, 90(18), p.181121.
  • Rickman, A., 2014. The commercialization of silicon photonics. Nature Photonics, 8(8), pp.579-582.
  • Arbabi, A. and Goddard, L.L., 2013. Measurements of the refractive indices and thermo-optic coefficients of Si 3 N 4 and SiO x using microring resonances. Optics letters, 38(19), pp.3878-3881.
  • Kluska, S., Jurzecka-Szymacha, M., Nosidlak, N., Dulian, P. and Jaglarz, J., 2022. The Optical and Thermo-Optical Properties of Non-Stoichiometric Silicon Nitride Layers Obtained by the PECVD Method with Varying Levels of Nitrogen Content. Materials, 15(6), p.2260.
  • Kim, S.M., Park, T.H., Huang, G. and Oh, M.C., 2018. Optical waveguide tunable phase delay lines based on the superior thermo-optic effect of polymer. Polymers, 10(5), p.497.
  • Bar-Cohen, A., Han, B. and Joon Kim, K., 2007. Thermo-optic effects in polymer Bragg gratings. In Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging (pp. A65-A110). Springer, Boston, MA.
  • Bischi, M., Sassolas, B., Fabrizi, F., Granata, M., Martelli, F., Montani, M., Piergiovanni, F. and Guidi, G.M., Measurement of the thermo-optic effect in IBS SiN.
  • Zanatta, A.R. and Gallo, I.B., 2013. The thermo optic coefficient of amorphous SiN films in the near-infrared and visible regions and its experimental determination. Applied Physics Express, 6(4), p.042402.
  • Cocorullo, G., Della Corte, F.G., Rendina, I. and Sarro, P.M., 1998. Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A: Physical, 71(1-2), pp.19-26.

Abstract Views: 210

PDF Views: 108




  • Enhancing SiN Thermo-Optic Effect

Abstract Views: 210  |  PDF Views: 108

Authors

Sumaya Memon
Department of Telecommunication Engineering, Mehran University of Engineering & Technology Jamshoro 76062 Sindh, Pakistan
Faisal Ahmed Memon
Department of Telecommunication Engineering, Mehran University of Engineering & Technology Jamshoro 76062 Sindh, Pakistan

Abstract


In this paper, we improve the TOE (Thermo-optic Efficiency) of SiN using SiOC as upper clad layer to simulate the waveguide and analyzed the refractive index by using MEEP/Beam-prop software for superior experimental results. In order to create photonic integrated circuits, a number of material platforms have been researched. (PICs). The semiconductors (Si, InP, GaAS) are not fulfil the complete requirement of photonics. So, we use dielectrics SiON, SiO2, SiN, and SiOC at 1550 nm become well-established platforms lowest losses possible, they suffer from relatively lower coefficient of themo-optic, about 10-5 / C. Silicon Nitride (SiN) has low TOC 2×10-5 / K and the recently silicon oxycarbide (SiOC) has been shown to highest TOC among the dielectrics 4 × 10-4 / K.

Keywords


Integrated Photonics, Thermo-Optic Effect, Silicon Nitride, Silicon Oxycarbide, Optical Waveguides.

References