In modern Radar applications, optimal sequences have been used in many areas, such as communication systems, radar, and sonar, because of their minimal peak sidelobe level, which causes an increase in the signal-to-noise ratio with a good range resolution at the output. The literature survey shows various pulse compression techniques that are widely used to achieve superior range resolution and range detection performance. Several studies have been conducted on chaotic communication involving chaotic maps in recent years, producing promising results. These maps are used to generate different phase-coded sequences. The properties of the chaotic map sequences are almost random. The performance of these sequences has been studied with various optimization techniques in literature by employing a matched filter and a mismatched filter and is measured in terms of peak sidelobe ratio. But the performance has not improved significantly. This paper focused on improving performance using a new hybrid technique to design mismatched filters. This improvement is achieved by designing the coefficients of the mismatched filters using a combination of metaheuristic methods and an evolutionary algorithm for specializing in intensification and diversification. A significant improvement in the peak sidelobe ratio and range resolution is obtained when the mismatched filter is combined with adaptive filters at the output.
Keywords
Chaotic sequences, GHO, Peak sidelobe ratio, Pulse compression, Range resolution.
User
Font Size
Information