The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Deep learning approaches rely on a wide-scale labeled dataset to attain a high level of performance. Although labeled data is more difficult and costly to access in some applications, such as bioinformatics and medical imaging, wide variety of ongoing research on the topic of Semi-Supervised Deep Learning (SSDL) can improve and fix underlying problems in this domain. The motivation for the suggested model Rank Based Two-Stage Semi-Supervised Deep Learning (RTS-SS-DL) is the same as how doctors deal with unobserved or suspect cases in day to day practice. The physicians deal with these suspect instances with the help of professional assistance from their colleagues. Before beginning therapy, some patients seek the opinion of a variety of skilled professionals. The patients are treated by the most appropriate (vote count) professional diagnosis. Our model (RTS-SS-DL) has achieved impressive metrics including 92.776% accuracy, 97.376% specificity, 86.932% sensitivity, 96.192% precision, 85.644% MCC (Matthews Correlation Coefficient), 3.808% FDR (False Discovery Rate), 2.624% FPR (False Positive Rate), 91.072% f1-score, 90.85% NPV (Negative Predictive Value), and 13.068% FNR (False Negative Rate) for the unseen dataset. The outcome of this research results in an SSDL model that is both more precise and effective.

Keywords

Labeled dataset, RTS-SS-DL, Self-organising classifier, Semi-supervised learning, Shoulder’s fracture classification.
User
Notifications
Font Size