Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Recent Advances in Understanding the Role of Growth Regulators in Plant Growth and Development in Vitro - II. Non-Conventional Growth Regulators


Affiliations
1 Central Arid Zone Research Institute, Jodhpur – 342003, (Rajasthan), India
2 School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
3 Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi, India
4 Indian Council of Forestry Research and Education, Dehradun, India
5 Division of Biochemistry, Indian Agricultural Research Institute, Delhi, India
     

   Subscribe/Renew Journal


A diverse array of growth regulators interact at the cellular level to produce physiological and morphological effects on plant growth, morphology and yield. The five conventional growth regulators viz. auxins, cytokinins, gibberellins, abscisic acid and ethylene are being used in plant cell, tissue and organ cultures for decades, while many of them, like non-purine cytokinins, polyamines, jasmonates, brassinosteroids, oligosaccharides, sterols, phosphoinositosides, salicylic acid and systemins, have recently been discovered and tested for their effects in vitro. However, many have not yet been examined for their effects on in vitro growth and development of plants. In this review, we attempted to summarize the progress that has been made over the past two decades towards understanding the role of non conventional PGRs in plant growth and development.

Keywords

Brassinosteroids, Jasmonic Acid, Oligosaccharides, Plant Growth Regulators, Polyamines, Salicylic Acid, Signal Peptides.
Font Size

User
About The Authors

Rajwant K. Kalia
Central Arid Zone Research Institute, Jodhpur – 342003, (Rajasthan)
India

Rohtas Singh
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana
India

Sanjay Kalia
Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi
India

S. K. Sharma
Indian Council of Forestry Research and Education, Dehradun
India

suresh Kumar
Division of Biochemistry, Indian Agricultural Research Institute, Delhi
India


Subscription Login to verify subscription
Notifications

  • Agusti J., Herold S., Schwarz M., Sanchez P., Ljung K. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA, 108:20242-20247.
  • Andarwulan N. and Shetty K. (2009). Influence of acetyl salicylic acid in combination with fish protein hydrolysates on hyperhydricity reduction and phenolic synthesis in oregano (Origanum vulgare) tissue cultures. J. Food Biochem, 23:619-635.
  • Antognoni F., Faudale M., Poli F. and Biondi S. (2009). Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa. Plant Biol., 11:161-169.
  • Asami T., Mizutani M., Fujioka S., Goda H., Min Y.K. (2001). Selective interaction of triazole derivatives with DWF4, a cytochrome p450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in plants. J. Biol. Chem., 276:25687–25691.
  • Aydin Y., Talas-Ogras T., Altmkut A., Ismailoglu I., Arican E. (2010). Cytohistological studies during cotton somatic embryogenesis with brassinosteroid application. IUFS J. Biol., 69:33-39.
  • Bais H.P., George J. and Ravishankar G.A. (2004). Influence of polyamines on growth of hairy ischolar_main cultures of Witloof Chicory (Cichorium intybus L. cv. Lucknow Local) and formation of coumarins. J. Plant Growth Regul., 18:33-37.
  • Bajguz A. and Czerpak R. (1996). Effect of Brassinosteroids on Growth and Proton Extrusion in the Alga Chlorella vulgaris Beijerinck (Chlorophyceae). Plant Growth Regul., 15:153-156.
  • Baldan B., Bertoldo A., Navazio L. and Mariani P. (2003). Oligogalacturonide-induced changes in the developmental pattern of Dacus carota L. somatic embryos. Plant Sci., 165:337-348.
  • Bao F., Shen J., Brady S.R., Muday G.K., Asami T. and Yang Z. (2004). Brassinosteroids interact with auxin to promote lateral ischolar_main development in Arabidopsis. Plant Physiol., 134:1624-1631.
  • Baroja-Fernández E., Aguirreola H., Martinkova J., Hanus J. and Strnad M. (2002). Aromatic cytokinins in micropropagated potato plants. Plant Physiol Biochem., 40:217-227.
  • Bastola D.R. and Minocha S.C. (1995). Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol., 109:63-71.
  • Bennett T., Sieberer T., Willett B., Booker J., Lusching C. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol., 16:553–563.
  • Be ová-Kákošová A., Digonnet C., Goubet F., Ranocha P., Jauneou A., et al. (2006). Galactoglucomannans increase cell population density and alter the protoxylem/metaxylem tracheary element ration in xylogenic cultures of Zinnia. Plant Physiol., 142:696-709.
  • Bhot M., Naphade S., Varghese J. and Chandra N. (2010). In vitro culture studies in three varieties of Codiaeum variegatum (L.) blume using node explants from field grown plants. J. Cell Tiss. Res., 10:2439-2444.
  • Blazquez S., Piqueras A., Serna M.D., Casas J.L. and Fernandez J.A. (2004). Somatic embryogenesis in saffron: optimization through temporary immersion and polyamine metabolism. Acta Hort., 650:269-276.
  • Bulgakov V.P., Tchernoded G.K., Mischenko N.P., Khodakovskaya M.V., Glazunov V.P., (2002). Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J. Biotechnol., 97:213-221.
  • Carra A., De-Pasquale F., Ricci A. and Carimi F. (2006). Diphenylurea derivatives induce somatic embryogenesis in Citrus. Plant Cell Tiss. Org. Cult., 87:41-48.
  • Chiwocha S.D.S., Dixon K.W., Flematti G.R., Ghisalberti E.L., Merritt D.J., (2009). Karrikins: A new family of plant growth regulators in smoke. Plant Sci., 177:252-256.
  • Clouse S.D. (1996). Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J.,10:1-8.
  • Couee I., Hummel I., Sulmon C., Gouesbet G. and El Amrani A. (2004). Involvement of polyamines in ischolar_main development. Plant Cell Tiss. Org. Cult., 76:1-10.
  • Cowan A.K. (2006). Phospholipidsas plant growth regulators. Plant Growth Regul., 48:97-109.
  • Davies P.J. (2010). The plant hormones: their nature, occurrence, and functions. In: The Plant Hormones: Biosynthesis, Signal Transduction, Action (Davis P.J. ed),. Springer, USA
  • De-la-Pena C., Galaz-A valos R.M. and Loyola-Vargas V.M. (2008). Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol. Biotechnol., 39:215–224.
  • Desai H.V. and Mehta A.R. (1985). Changes in polyamine levels during shoot formation, ischolar_main formation and callus induction in cultured Passiflora leaf discs. J. Plant Physiol., 119:45-53.
  • Dhawan A.K., Moudgil R., Dendsay J.P.S. and Mandhan R.P. (2004a). Low thidiazuron levels promote and sustain shootlet multiplication in sugarcane. Indian J. Plant Physiol., 9:354-359.
  • Dhawan A.K., Mehra S.S., Jain A. and Chaturvedi P. (2004b). Effect of basal media, growth regulators and putrescine on callus induction and proliferation from seedling explants of Brassica junceaRH-781. Cruciferae Newslett,25:35-36.
  • Dhawan A.K., Moudgil R., Dendsay J.P.S. and Mandhan R.P. (2006). Alterations in RAPD profiles of proliferating shootlets of sugarcane in response to thiadiazuron. Indian J. Biotechnol., 5:207-210.
  • Durrant W.E. and Dong X. (2004). Systemic acquired resistance. Annu Rev. Phytopathol., 42:185–209.
  • Escalona M., Cejas I., Gonzalez-Olmedo J., Capote I. and Roels S. (2003). The effect of meta-topolin on plantain propagation using a temporary immersion bioreactor. Info Musa., 12:28-30.
  • Fàbregas N., Ibanes M. and Cano-Delgado A.I. (2010).A systems biology approach to dissect the contribution of brassinosteroid and auxin hormones to vascular patterning in the shoot of Arabidopsis thaliana. Plant Signal Behav, 5:903–906.
  • Farmer E.E., Moloshok T.D., Saxton M.J. and Ryan C.A. (1991). Oligosaccharide signaling in plants. Specificity of oligo-uronide-enhanced plasma membrane protein phos-phorylation. J. Biol. Chem., 266:3140-3145.
  • Farrokhi N., Whitelegge J.P. and Brusslan J.A. (2008). Plant peptides and peptidomics. Plant Biotech. J.,6:105–134.
  • Fernández-Marcos M., Sanz L., Lewis D.R., Muday G.K. and Lorenzo O. (2011). Nitric oxide causes ischolar_main apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl. Acad. Sci. USA, 108:18505-18511.
  • Ferrie A.M.R., Dirpaul J., Krishna P., Krochko J. and Keller W.A. (2005). Effects of brassinosteroids on microspore embryogenesis in Brassica species. In Vitro Cell Dev Biol-Plant, 41:742-745.
  • Fiore S., Pasquale F.D., Carimi1 F. and Sajeva M. (2002). Effect of 2, 4-D and 4-CPPU on somatic embryogenesis from stigma and style transverse thin cell layers of Citrus. Plant Cell Tiss. Org. Cult., 68:57–63.
  • Fletcher R.A., Gilley A., Sankhala N. and Davis T.D. (2000). Triazoles as growth regulators and stress protectants. Hort. Rev., 24:55-138.
  • Furmanowa M., Glowniak K., Syklowska-Baranek K., Zgorka G. and Jozefczyk A. (1997). Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus× media var. Hatfieldii. Plant Cell Tiss. Org. Cult., 49:75-79.
  • Gallo-Meagher M., English R.G. and Abouzid A. (2002). Thiadiazuron stimulates shoot regeneration of sugarcane embryonic callus. In vitro Cell Dev. Biol-Plant, 36:37-40.
  • Gaspar T., Kevers C., Penel C., Greppin H., Reid D.M. and Thorpe T. (1996). Plant hormones and plant growth regulators in plant tissue culture. In vitro Cell Dev. Biol-Plant, 32:272-289.
  • Goldman J.J., Hanna W.W., Fleming G. and Ozias-Akins P. (2003). Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem, inflorescence, and immature embryo-derived embryogenic tissue. Plant Cell Rep., 21:999–1009.
  • Gross D. and Parthier B. (1994). Novel natural substances acting in plant growth regulation. J. Plant Growth Regul., 13:93-114.
  • Guo B., Abbasi B.H., Zeb A., Xu L.L. and Wei Y.H. (2011). Thidiazuron: A multi-dimensional plant growth Regulator. Afr. J. Biotech., 10:8984-9000.
  • Halliday K.J. (2004). Plant hormones: the interplay of brassinosteroids and auxin. Curr. Biol., 14:R1008–R1010.
  • Hao L., Zhou L., Xu X., Cao J. and Xi T. (2006). The role of salicylic acid and carrot embryogenic callus extracts in somatic embryogenesis of naked oat (Avena nuda). Plant Cell Tiss. Org. Cult., 85:109-113.
  • Hartwig T., Chuck G.S., Fujioka S., Klempien A., Weizbauer R. (2011). Brassinosteroid control of sex determination in maize. Proc. Natl. Acad. Sci. USA, 108:19814-19819.
  • Hong P.I., Chen J.T. and, Chang W.C. (2008). Effects of salicylic and acetylsalicylic acid on direct somatic embryogenesis in Oncidium. J. Plant Biochem. Biotech., 17:149-153.
  • Hong Z., Ueguchi-Tanaka M., Shimizu-Sato S., Inukai Y. and Fujioka S. (2002). Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J., 32:495–508.
  • Hu Y., Bao F. and Li J. (2000). Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J., 24:693-701.
  • Huetteman A. and Preece E.J. (1993). Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Org. Cult., 33:105-119.
  • Humánez A., Blasco M., Brisa C., Segura J. and Arrillaga I. (2011). Thidiazuron enhances axillary and adventitious shoot proliferation in juvenileexplants of Mediterranean provenances of maritime pine Pinus pinaster. In Vitro Cell Dev. Biol-Plant, 47:569–577.
  • Hutchinson M.I. and Saxena P.K. (1996). Role of purine metabolism in TDZ induced somatic embryogenesis of geranium (Pelaronium horturum L. Bailey). J. Plant Physiol., 149:573-579.
  • Iyer R.I., Jayaraman G. and Ramesh A. (2009). In vitro responses and production of phytochemicals of potential medicinal value in nutmeg, Myristica fragrans Houtt. Indian J. Sci. Tech., 2: 65-70.
  • Kackar A. and Shekhawat N.S. (2007). Plant regeneration through somatic embryogenesis and polyamine levels in cultures of grasses of Thar Desert. J. Cell Mol. Biol., 6:121-127.
  • Kakkar R.K., Nagar P.K., Ahuja P.S. and Rai V.K. (2000). Polyamines and plant morphogenesis. Biol. Plant.,1:1-11.
  • Kákoniová D., Hlinkova E., Liskova D. and Kollarova K. (2010). Oligosaccharides induce changes in protein patterns of regenerating spruce protoplasts. Cent. Eur. J. Biol., 5:353–363.
  • Katsir L., Davies K.A., Bergmann D.C. and Laux T. (2011). Peptide signaling in plant development. Curr. Biol., 21:R356–R364.
  • Kaur-Sawhney R., Shih L.M., Flores H.E. and Galston A.W. (1982). Relation of polyamines synthesis and titer to aging and senescence in oat leaves. Plant Physiol., 69:405-410.
  • Kumar A., Altabella T., Taylor M.R. and Tiburcio A.F. (1997). Recent advances in polyamine research. Trends Plant Sci., 2:124-130.
  • Kumar S. and Bhat V. (2012). High frequency direct plant regeneration via multiple shoot induction in the apomictic forage grass Cenchrus ciliaris L. In Vitro Cell Dev. Biol-Plant,48: 241–248.
  • Kumar S. and Chandra A. (2009). Direct plant regeneration via multiple shoot induction in Stylosanthes seabrana. Cytologia, 74:391-399.
  • Lišková D., Auxtova O., Kakoniova D., Kubackova M., Karacsonyi S. (1995). Biological activity of galactoglucomannan-derived oligosaccharides. Planta, 196: 425-429.
  • Lišková D., Kakoniova D., Kubackova M., Kollarova S.K. and Capek P. (1999). Biologically active oligosaccharides, In: Advances in Regulation of Plant Growth and Development (Strnad M., Pec P. and, Beck E. eds), Peres Publishers, Olomouc.
  • Lu Z., Huang M., Ge D.P., Yang Y.H., Cai X.N., Qin P. and She J.M. (2003). Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae). Plant Cell Tiss Org. Cult., 73:87-89.
  • Luna C., Sansberro P., Mroginski L. and Tarrago J. (2003). Micropropagation of Ilex dumosa (Aquifoliaceae) from nodal segments in a tissue culture system. Biocell, 27:205-212.
  • Luo J.P., Jiang S.T. and Pan L.J. (2001). Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall: relationship with H O 2 2 production and H O -metabolizing enzyme activities. Plant Sci., 161:125-132.
  • Malik S.K., Chaudhury R. and Kalia R.K. (2005). In vitro multiplication and conservation of Garcinia indica: A medicinal tropical tree. Sci. Hort., 106:539-553.
  • Malik S.K., Kalia R.K. and Chaudhury R. (2010). In vitro regeneration of Garcinia indica using leaf explants. Indian J. Plant Physiol., 15:262-266.
  • Malmberg R.L., Watson M.B., Galloway G. and Yu W. (1998) Molecular genetic analyses of plant polyamines. Crit. Rev. Plant Sci., 17:199–224.
  • Matsubayashi Y. and Sakagami Y. (2006). Peptide hormones in plants. Annu. Rev. Plant Biol., 57:649–74.
  • Millan-Mendoza B. and Graham J(1999)Organogenesis and micropropagation in red raspberry using forchlorfenuron (CPPU). J. Hort. Sci. Biotechnol., 74:219-223.
  • Minocha R., Lee J.S., Long S., Bhatnagar P. and Minocha S.C. (2004). Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium. Tree Physiol, 24:551–560.
  • Miranda J.H., Williams R.W. and Kerven G. (2007). Galacturonic acid-induced changes in strawberry plant development in vitro. In Vitro Cell Dev. Biol-Plant, 43:639-643.
  • Monteiro M., Kevers C., Dommes J. and Gaspar T. (2002). A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginsengCA Meyer. Plant Cell Tiss. Org. Cult., 68:225-232.
  • Montiel G., Zarei A., Körbes A.P. and Memelink J. (2011). The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsisand is controlled by the transcription factor AtMYC2. Plant Cell Physiol., 52: 578-587.
  • Mussio I. and Rusig A.M. (2009). Morphogenetic responses from protoplasts and tissue culture of Laminaria digitata (Linnaeus) J. V. Lamouroux (Laminariales, Phaeophyta): callus and thalloid-like structures regeneration. J. Appl. Phycol., 21:255-264.
  • Nagata N., Asami T. and Yoshida S. (2001). Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (Lepidium sativum). Plant Cell Physiol., 42:1006–1011.
  • Nagata N., Min Y.K., Nakano T., Asami T. and Yoshida S. (2000). Treatment of dark-grown Arabidopsis thaliana with a brassinosteroidbiosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta, 211:781–790.
  • Nakajima I., Kobayashi S. and Nakamura Y. (2000). Embryogenic callus induction and plant regeneration from unfertilized ovule of ‘Kyoho’ grape. J. Jap. Soc. Hort. Sci., 69:186-188.
  • Nakaya M., Tsukaya H., Murakami N. and Kato M. (2002). Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol., 43:239–244.
  • Nemhauser J.L. and Chory J. (2004). BRing it on: new insights into the mechanism of brassinosteroid action. J. Exp. Bot., 55:265–270.
  • Niemia K., Sarjalab T., Chenc X. and Haggmand H. (2007). Spermidine and the ectomycorrhizal fungus Pisolithus tinctorius synergistically induce maturation of Scots pine embryogenic cultures. J. Plant Physiol., 164:629-635.
  • Nieves N., Rodriguez K., Cid M., Castillo R., Gonzalez J.L., et al. (2007). Effect of brassinosteroid analogs BB-6 an MH-5 on protein metabolism in sugarcane embryogenesis. Agronomia Costarricense, 31:71-77.
  • Nomura T., Nakayama M., Reid J.B., Takeuchi Y. and Yokota T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol., 113:31-37.
  • Noreen S., Ashraf M. and Hussain M. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L) plant. Pak. J. Bot., 4:473-479.
  • Núñez M., Siqueira W.J., Hernández M., Zullo M.A.T., Robaina C., (2004). Effect of spirostane analogues of brassinosteroids on callus formation and plant regeneration in Lettuce (Lactuca sativa). Plant Cell Tiss. Org. Cult., 78:97-99.
  • Palavan U.N., Cag S. and Cetin E. (2002). Growth responses of excised radish cotyledons to metatoplin. Can. J. Plant. Sci., 82:191-194.
  • Parimalan R., Giridhar P. and Ravishankar G.A. (2010). Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tiss. Org. Cult., 105:285-290.
  • Paul A., Mitter K. and Raychaudhuri S.S.(2009). Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. Plant Cell Tiss. Org. Cult., 97:303-11.
  • Quiroz-Figueroa F. and Mendez-Zeel M. (2001). Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep., 20:679-689.
  • Ravniker M. and Gogala N. (1990). Regulation of potato meristem development by jasmonic acid in vitro. Plant Growth Regul., 9:233-236.
  • Ryan C.A., Pearce G., Scheer J. and Moura D.S. (2002). Polypeptide hormones. Plant Cell Suppl., 14:S251–S264.
  • Sabapathy S. and Nair H. (1995). In vitro propagation of taro, with spermine, arginine and ornithine II. Plantlet regeneration via callus. Plant Cell Rep., 14:520-524.
  • Sakhanokho H.F. and Kelley R.Y. (2009). Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna Red’). Afr. J. Biotechnol., 8:1474-1481.
  • Santner A., Calderon-Villalobos L.I.A. and Estelle M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chem. Biol., 5:301-307.
  • Sasamoto H., Ogita S., Wakita Y. and Fukui M. (2002). Endogenous levels of abscisic acid and gibberellins in leaf protoplasts competent for plant regeneration in Betula platyphyllaand Populus alba. Plant Growth Regul., 38:195-201.
  • Schroder R., Wegrzyn T.F., Bolitho K.M. and Redgwell R.J. (2004). Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta, 219:590–600.
  • Senaratna T., Bunn E. and Bishop A. (2002). Triazol treatment of explant source provides stress tolerance in progeny of geranium (Pelargonium hortorum Bailey) plants regenerated by somatic embryogenesis. Plant Growth Regul., 36:169-174.
  • Sharry S., Ponce J.L.C., Estrella L.H., Cano R.M.R., Lede S., (2006). An alternative pathway for plant in vitro regeneration of chinaberry-tree Melia azedarach L. derived from the induction of somatic embryogenesis. J. Biotech., 9:187-194.
  • Srivatanakul M., Park S.H., Sanders J.R., Salas M.G. and Smith R.H. (2000). Multiple shoot regeneration of kenaf (Hibiscus cannabinus L.) from a shoot apex culture system. Plant Cell Rep., 19:1165-1170.
  • Strnad M., Hanus J., Vanek T., Kaminek M., Ballantine J., (1997). Meta-topolin, a highly active aromatic cytokinin from Poplar leaves (Populus x CanadiensiMoench. cv. Robusta). Phytochem, 45:213-218.
  • Subotic A., Jevremovic S., Cingel A. and Miloševic S. (2008). Effect of urea–type cytokinins on axillary shoots regeneration of Impatiens walleriana l. Biotechnol. Biotechnol. Eq., 22:817-819.
  • Suresh B., Thimmaraju R., Bhagyalakshmi N. and Ravishankar G.A. (2004). Polyamine and methyl jasmonate- influenced enhancement of betalaine production in hairy ischolar_main cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochem., 39:2091–2096.
  • Tang W. and Newton R. (2005). Polyamines promote ischolar_main elongation and growth by increasing ischolar_main cell division in regenerated Virginia pine (Pinus virginiana Mill.). Plant Cell Rep., 24:581-589.
  • Tanimoto S. and Matsubara Y. (1995). Stimulating effect of spermine on bulblet formation in bulb-scale segments of Lilium longiflorum. Plant Cell Rep., 15:297-300.
  • Tefera Wannakrairoj (2006). Synergistic effects of some plant growth regulators on in vitro shoot proliferation of korarima (Aframomum corrorima (Braun) Jansen). Afr. J. Biotech., 5:1894-1901.
  • Thummel C.S. and Chory J. (2002). Steroid signaling in plants and insects—common themes, different pathways. Genes Dev., 16:3113-3129.
  • Toro F.J., Martín-Closas L. and Pelacho A.M. (2003). Jasmonates promote cabbage (Brassica oleracea L. var Capitata L.) ischolar_main and shoot development. Plant Soil, 255:77-83.
  • Toteva V.K., Van Telgen H.J. and Yakimova E. (2000). Role of phenylurea cytokinin CPPU in apical dominance release in in vitro cultured Rosa hybrida L. J. Plant Growth Regul., 19:232-237.
  • Tran Thanh Van K., Toubart P., Cousson A., Darvill A.G., Gollin D.J., (1985). Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins. Nature, 314:615-617.
  • Tsuro M., Koda M. and Inoue M. (2000). Efficient plant regeneration from multiple shoots formed in the leaf-derived callus of Lavandula vera, using the “open culture system”. Sci. Hort., 86:81-88.
  • Tung P., Hooker S., Tampe P.A., Reid D.M. and Thorpe T.A. (1996). Jasmonic acid: effects on growth and development of isolated tomato ischolar_mains cultured in vitro. Int. J. Plant Sci., 157:713-721.
  • Turbicio A.F., Campers J.L. and Figueras X. (1993). Polyamines and morphogenesis in monocots. In: Morphogenesis in plants: molecular approaches (Roubelakis-Angelakis K.A. and Tran Thanh Van K. ed.) New York: Plenum Press, pp 113-135.
  • Uranantseva V.V., Karyagina T.B., Chertkova R.V., Miraveva T.I. and Bairamahvili D.I. (1999). Induction of phenylalanine ammonia lyase by methyl jasmonate in cultured cells of Arnebia euchroma. Russian J. Plant Physiol., 46:749-753.
  • Vasudevan A., Selvaraj N., Ganapathi A., Kasthurirengan S., Ramesh A.V., (2008). Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). In Vitro Cell Dev. Biol-Plant, 44:300-306.
  • Vinayak V., Dhawan A.K. and Gupta V.K. (2009). Efficacy of non-purine and purine cytokinins on shoot regeneration in vitro in sugarcane. Indian J. Biotech., 8:227-231.
  • Vlot A.C., Klessig D.F. and Park S.W. (2008). Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol., 11:436–442.
  • Wakita Y., Yokota S., Yoshizawa N., Katsuki T., Nishiyama Y., (2005). Interfamilial cell fusion among leaf protoplasts of Populus alba, Betula platyphyllaand Alnus firma: assessment of electric treatment and in vitro culture conditions. Plant Cell Tiss. Org. Cult., 83:319-326.
  • Walden R., Cordiero A. and Tiburcio A.F. (1997). Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol., 113:1009-1013.
  • Wasternack C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. (Lond.), 100:681–697.
  • Wei M., Wei S.H. and Yang C.Y. (2010). Effect of putrescine on the conversion of protocorm-like bodies of Dendrobium officinale to shoots. Plant Cell Tiss. Org. Cult., 102:145-151.
  • Werbrouck S.P.O. and Debergh P.C. (1995). Imazalil enhances the shoot inducing effect of benzyladenine in Spathiphyllum floribundum Schott. J. Plant Growth Regul., 14:105-107.
  • Werbrouck S.P.O. and Debergh P.C. (1996). Imadizole fungicides and paclobutrazol enhance cytokinin-induced adventitious shoot proliferation in Araceae. J. Plant Growth Regul., 15:81-85.
  • Werbrouck S.P.O. and Debergh P.C. (1997). Possible role of gibberellins in the interaction between cytokinins and pesticides. Acta Hort., 447:59-62.
  • Werbrouck S.P.O., Stranad M., Van Onckelew H.A. and Deberg P.C. (1996). Metatoplin, an alternative to benzyladenine in tissue culture. Physiol Plant, 98:291-297.
  • Xu Y.F., Jin J.W., Liu T.Y., Zhou H., Hu T.M., (2011). Regulation function of nitric oxide (NO) in leaves of plant under environmental stress. Afr. J. Biotech., 10:15673-15677.
  • Yang G. and Komatsu S. (2004). Microarray and proteomic analysis of brassinosteroid- and gibberellins-regulated gene and protein expression in rice. Genom Proteom Bioinfor., 2:77–83.
  • Yang H., Matsubayashi Y., Hanai H. and Sakagami Y. (2000). Phytosulfokine-á, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors. Plant Cell Physiol., 41:825–830.
  • Yang Y.K., Lee S.Y., Park W.T., Park N.I. and Park S.U. (2010). Exogenous auxins and polyamines enhance growth and rosmarinic acid production in hairy ischolar_main cultures of Nepeta cataria L. Plant Omics J., 3:190-193.
  • Yokota T. (1997). The structure, biosynthesis, and function of brassinosteroids. Trends Plant Sci., 2:137-143.
  • Yong-xin L.I., Xiao-ming W., Ming-gao C., Hui-jie Z. and Jun-bin L.I. (2010). Effects of phytohormone on tissue culture of Illex verticillata. J. CentralSouth Univ. Forest Technol., DOI: CNKI:SUN:ZNLB.0.2010-01-015.
  • Zhang Q., Chen J.J. and Henny R.J. (2006). Regeneration of Syngonium podophyllum “Variegatum” through direct somatic embryogenesis. Plant Cell Tiss. Org. Cult., 84:161-168.
  • Zhou L., Yang C., Li J., Wang S. and Wu J. (2003). Heptasaccharide and octasaccharide isolated from Paris polyphylla var. yunnanensis and their plant growth-regulatory activity. Plant Sci., 165:571-575.

Abstract Views: 228

PDF Views: 0




  • Recent Advances in Understanding the Role of Growth Regulators in Plant Growth and Development in Vitro - II. Non-Conventional Growth Regulators

Abstract Views: 228  |  PDF Views: 0

Authors

Rajwant K. Kalia
Central Arid Zone Research Institute, Jodhpur – 342003, (Rajasthan), India
Rohtas Singh
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
Sanjay Kalia
Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi, India
S. K. Sharma
Indian Council of Forestry Research and Education, Dehradun, India
suresh Kumar
Division of Biochemistry, Indian Agricultural Research Institute, Delhi, India

Abstract


A diverse array of growth regulators interact at the cellular level to produce physiological and morphological effects on plant growth, morphology and yield. The five conventional growth regulators viz. auxins, cytokinins, gibberellins, abscisic acid and ethylene are being used in plant cell, tissue and organ cultures for decades, while many of them, like non-purine cytokinins, polyamines, jasmonates, brassinosteroids, oligosaccharides, sterols, phosphoinositosides, salicylic acid and systemins, have recently been discovered and tested for their effects in vitro. However, many have not yet been examined for their effects on in vitro growth and development of plants. In this review, we attempted to summarize the progress that has been made over the past two decades towards understanding the role of non conventional PGRs in plant growth and development.

Keywords


Brassinosteroids, Jasmonic Acid, Oligosaccharides, Plant Growth Regulators, Polyamines, Salicylic Acid, Signal Peptides.

References