The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


The boundary layer flow and heat transfer in nanofluid over a stretching sheet using Buongiorno model and thermophysical properties of nanoliquids is numerically studied. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using the similarity variables and been solved numerically using shooting method for nanoparticles, namely silver Ag, copper Cu, alumina Al2O3 and titania TiO2 in water as based fluid with Prandtl number Pr = 6.2. The numerical results obtained for the local Nusselt number and the local Sherwood number as well as velocity, temperature and nanoparticle concentration profiles are presented graphically and discussed. The effects of Brownian motion Nb, thermophoresis Nt and nanoparticle volume fraction φ on the flow and heat transfer behaviours are discussed in detail. This study has shown that the stretching sheet is an unique solutions. Otherwise, when the nanoparticle volume fraction parameter increases, Brownian motion and thermophoresis parameters decrease, the local Nusselt number increases, but decreases the local Sherwood number.


Keywords

Boundary Layer, Heat Transfer, Nanofluid, Stagnation Point, Stretching Sheet.
User