Open Access Open Access  Restricted Access Subscription Access

Pulsatile Flow of Jeffrey Hybrid Nanofluid in a Vertical Channel with Entropy Generation


Affiliations
1 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India
 

This study examines the hydrodynamic pulsatile flow of Jeffrey hybrid (Au+Al2O3/Blood) nanofluid in a vertical channel with entropy production. The literature shows that the investigations are only related to the pulsating flow of nanofluid. Any study related to the pulsating flow of Jeffrey hybrid nanofluid in a vertical channel with Joule heating, thermal radiation, and heat source/sink did not report so far. The novelty of the present work is the investigation of entropy generation on pulsatile flow of Jeffrey hybrid nanofluid with Joule heating, thermal radiation and heat source/sink effects in a vertical channel. The transformation of the governing partial differential equations into a system of ordinary differential equations are made by applying the perturbation method and then numerically solved by fourth-order Runge-Kutta method aided by bvp4c shooting technique built-in MATLAB software. This work is useful for chemical engineering, blood cancer treatment, nano-drug delivery, pharmaceutical process, and biomedical aspects. The effects of various emerging parameters and variables on velocity, temperature, entropy generation, and the Bejan number are displayed through graphs. The consequences of physical parameters on heat transfer rate are prearranged in a table. This analysis demonstrates that the temperature of hybrid nanofluid increases with an increment in radiation parameter, and Eckert number. The entropy generation is an increasing function of Eckert number and radiation parameter whereas it decelerates with a rise in Hartmann number. The heat transfer rate has a higher impact in the case of (Au+Al2O3/Blood) hybrid nanofluid as compare to mono nanofluid.

Keywords

Entropy Generation, Jeffrey Hybrid Nanofluid, Pulsatile Flow, Vertical Channel, Grashof Number.
User
Notifications
Font Size

  • Wang C, ASME J Appl Mech, 38 (1971) 553.
  • Radhakrishnamacharya G & Maiti M K, Int J Heat Mass Transfer, 20 (1977) 171.
  • Makinde O D, Int Commun Heat Mass Transfer, 32 (2005) 1411.
  • Eid M R, Al-Hossainy A F & Zoromba M S, Commun Theo Phys, 71 (2019) 1425.
  • Adesanya S O, Falade J A & Makinde O D, UPB Sci Bull Ser D, 77 (2015) 36.
  • Ali K & Abdon A J, Therm Anal Calorim, 146 (2021) 689.
  • Govindarajulu K & Reddy A S, Phys Fluids, 34 (2022) 013105.
  • Mamatha S U, Devi R R, Ahammad N A, Shah N A, Rao B M, Raju C S K & Guedri K, Int J Mod Phys B, 37 (2023) 2350007.
  • Kot M A & Elmaboud Y A, J Therm Anal Calorim, 147 (2022) 4355.
  • Eldabe N T, J Egypt Math Soc, 25 (2017) 375.
  • Pant C S, Kishore P & Kumar S, Int J Therm Sci, 176 (2022) 107529.
  • Maskeen M M, Mehmood O U & Zeeshan A, J Visual, 21 (2018) 407.
  • Haq R U, Shahzad F & Al-Mdallal Q M, Results Phys, 7 (2017) 57.
  • Shah N A, Al-Zubaidi A & Saleem S, Adv Math Phys, 2021 (2021) 1.
  • Wang X, Qiao Y, Qi H & Xu H, Int Commun Heat Mass Transfer, 133 (2022) 105930.
  • Xu H & Sun Q, Commun Theor Phys, 71 (2019) 903.
  • Kumar P B & Suripeddi S, Eur Phys J Spec Top, 230 (2021) 1465.
  • Choi S U S & Eastman J, Am Soc Mech Eng Fluids Eng Div, 231 (1995) 99.
  • Devi S U & Devi S A, J Nanofluids, 36 (2017) 419.
  • Waini I, Ishak A, Groşan T & Pop I, Int Commun Heat Mass Transfer, 114 (2020) 104565.
  • Hayat T & Nadeem S, Results Phys, 7 (2017) 2317.
  • Thamizharasan T & Reddy A S, Indian J Pure Appl Phys, 60 (2022) 680.
  • Azimi M, Ganji D D, Azimi A & Riazi R, Indian J Chem Technol, 25 (2018) 281.
  • Manzoor N, Qasim I, Khan M I, Ahmed M W, Guedri K, Bafakeeh O T & Galal A M, Appl Sci, 12 (2022) 9737.
  • Bafakeeh O T, Raghunath K, Ali F, Khalid M, Tag-El D E S M, Oreijah M, Guedri K, Khedher N B & Khan M I, J Catal, 12 (2022) 1233.
  • Sehar B, Waris A, Gilani S O, Ansari U, Mushtaq S, Khan N B, Jameel M, Khan M I, Bafakeeh O T & Tag-El D E S M, J Crystals, 12 (2022) 1429.
  • Waqas H, Oreijah M, Guedri K, Khan S U, Yang S, Yasmin S, Khan M I, Bafakeeh O T, Tag-El E S M & Galal A M, J Crystals, 12 (2022) 1308.
  • Shahid M, Javed H M A, Ahmad M I, Qureshi A A, Khan M I, Alnuwaiser M A, Ahmed A, Khan M A, Tag-El D E S M, Shahid A & Rafique A, Nanomater, 12 (2022) 3413.
  • Kirankumar H V, Thejas R & Naveen C S, Bioref, 12 (2022) 11.
  • Li S, Puneeth V, Saeed A M, Singhal A, Al-Yarimi F A, Khan M I & Eldin S M, Sci Rep, 13 (2023) 2340.
  • Abbas S Z, Wang X, Khan W A, Hobiny A & Iqbal K J, Energy Storage, 51 (2022) 104462.
  • Ahmed M F, Zaib A, Ali F, Bafakeeh O T, Tag-El D E S M, Guedri K, Elattar S & Khan M I, Micromachines, 13 (2022) 1768.
  • Li S, Khan M I, Alzahrani F & Eldin S M, Case Stud Therm Eng, 26 (2021) 100975.
  • Abbasi A, Farooq W, Tag-El D E S M, Khan S U, Khan M I, Guedri K, Elattar S, Waqas M & Galal A M, Micromachines, 13 (2022) 1415.
  • Hussain S M, Sharma R & Chamkha A J, Chinese J Phys, 75 (2022) 120.
  • Iftikhar N, Rehman A & Sadaf H, Int Commun Heat Mass Transf, 120 (2021) 105012.
  • Elsaid E M & Abdel-Wahed M S, Case Stud Therm Eng, 25 (2021) 100913.
  • Hayat T, Ullah H, Ahmad B & Alhodaly M S, Int Commun Heat Mass Trans, 120 (2021) 104965.
  • Cheng L, Nawaz M, Kaneez H, Alaoui M K, Selmi A, Li C & Assilzadeh H, Int Commun Heat Mass Transf, 126 (2021) 105275.
  • Thamizharasan T & Reddy A S, Eur Phys J Spec Top, 231 (2022) 1205.
  • Rajkumar D, Subramanyam R A, Srinivas S & Jagadeshkumar K, Int J Appl Comput Math, 8 (2022) 1.
  • Nazeer M, Hussain F, Khan M I & Khalid K, Waves Random Complex Media, (2022) 1.
  • Saif R S, Muhammad T, Sadia H & Ellahi R, Phys A Stat Mech Appl, 551 (2020) 124060.
  • Aleem M, Asjad M I, Ahmadian A, Salimi M & Ferrara M, Eur Phys J Plus, 135 (2020) 1.
  • Ali A, Saleem S, Mumraiz S, Saleem A, Awais & Khan D N, J Therm Anal Calorim, 143 (2021) 1985.
  • Hafeez M, Hashim & Khan M, Appl Nanosci, 10 (2020) 5459.
  • Sáchica D, Treviño C & Martínez-Suástegui L, Int J Heat Fluid Flow, 86 (2020) 108713.
  • Salawu S O & Ogunseye H A, Results Eng, 5 (2020) 100072.
  • Falade J A, Adesanya S O, Ukaegbu J C & Osinowo M O, Alexandria Eng J, 55 (2016) 69.
  • Hayat T, Kainat Z, Khan S A & Alsaedi A, Adv Mech Eng, 14 (2022) 168781322210954.
  • Motsumi T G & Makinde O D, Phys Scr, 86 (2012) 045003.
  • Santhosh C, Indian J Chem Technol, 29 (2022) 311.
  • Hayat T, Kanwal M, Qayyum S & Alsaedi A, Phys A Stat Mech App, 544 (2020) 123437.
  • Mansour M A, Siddiqa S, Gorla R S R & Rashad A M, Therm Sci Eng Prog, 6 (2018) 57.
  • Javed M F, Waqas M, Khan M I, Khan, N B, Muhammad R, Rehman M, Khan S W & Hassan M T, Appl Nanosci, 10 (2020) 3011.
  • Li S, Khan M I, Alzahrani F & Eldin S M, Case Stud Therm Eng, 42 (2023) 102722.
  • Hussain S, Ahmed S E & Akbar T, Int J Heat Mass Transf, 114 (2017) 1054.

Abstract Views: 125

PDF Views: 94




  • Pulsatile Flow of Jeffrey Hybrid Nanofluid in a Vertical Channel with Entropy Generation

Abstract Views: 125  |  PDF Views: 94

Authors

A Subramanyam Reddy
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India
T Thamizharasan
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India

Abstract


This study examines the hydrodynamic pulsatile flow of Jeffrey hybrid (Au+Al2O3/Blood) nanofluid in a vertical channel with entropy production. The literature shows that the investigations are only related to the pulsating flow of nanofluid. Any study related to the pulsating flow of Jeffrey hybrid nanofluid in a vertical channel with Joule heating, thermal radiation, and heat source/sink did not report so far. The novelty of the present work is the investigation of entropy generation on pulsatile flow of Jeffrey hybrid nanofluid with Joule heating, thermal radiation and heat source/sink effects in a vertical channel. The transformation of the governing partial differential equations into a system of ordinary differential equations are made by applying the perturbation method and then numerically solved by fourth-order Runge-Kutta method aided by bvp4c shooting technique built-in MATLAB software. This work is useful for chemical engineering, blood cancer treatment, nano-drug delivery, pharmaceutical process, and biomedical aspects. The effects of various emerging parameters and variables on velocity, temperature, entropy generation, and the Bejan number are displayed through graphs. The consequences of physical parameters on heat transfer rate are prearranged in a table. This analysis demonstrates that the temperature of hybrid nanofluid increases with an increment in radiation parameter, and Eckert number. The entropy generation is an increasing function of Eckert number and radiation parameter whereas it decelerates with a rise in Hartmann number. The heat transfer rate has a higher impact in the case of (Au+Al2O3/Blood) hybrid nanofluid as compare to mono nanofluid.

Keywords


Entropy Generation, Jeffrey Hybrid Nanofluid, Pulsatile Flow, Vertical Channel, Grashof Number.

References