Dye sensitized solar cells have proven its potential as affordable, green method of turning solar energy into electrical energy. This article presents an extensive comparative study on dye sensitized solar cells with two types of transport layers made of ZnO nanorods and TiO2 mesoporous film, wherein bacterial pigment extracted from microorganism Serratia nematodiphila strain B2 is employed as a sensitizer. For performance enhancement via the plasmonic effect, Ag nanoparticles have been deposited onto conducting glass and used as counter electrode (CE). The efficiency and fill factor (averaged over 3 readings) are found to be approximately 2% and 43%, respectively, with TiO2 mesoporous film and 0.4% and 25%, respectively, with ZnO nanorod in the designed DSSCs. Experiments have been conducted with TiO2 film for ten weeks to evaluate the stability of the pigment. The findings suggest that bacterial pigments may possibly replace dyes, creating a new category of solar cells known as biopigment-sensitized solar cells.
Keywords
Bacterial Pigment, DSSC, Biopigment-Sensitized Solar Cells, Biopigment-Sensitized Solar Cells.
User
Font Size
Information