The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Degradation of phenol by heat-activated, ZVI-activated, AC-activated, heat/AC-activated, and heat/ZVI-activated persulfate have been investigated. As a result, the degradation of phenol fitted well with pseudo-first order kinetic model. For the solution with phenol concentration of 100 mg/L, degradation efficiency of nearly 100% and reaction rate constant of 0.0506 min-1 are realized by heat-activated persulfate when reaction temperature is 70±C, concentration of persulfate is 15 g/L, reaction time is 120 min under neutral pH. Besides, the highest degradation efficiency and reaction rate constant of phenol by ZVI-activated are respectively, 92.85% and 0.0198 min-1 when concentration of ZVI is 5 g/L, concentration of persulfate was 15 g/L, and reaction time is 120 min under neutral pH. Furthermore, the highest degradation efficiency and reaction rate constant of phenol by AC-activated persulfate are 99.1% and 0.0373 min-1, respectively with persulfate concentration of 5 g/L and AC concentration of 5 g/L under neutral pH in 120 min. Moreover, the heat/AC-activated and heat/ZVI-activated persulfate are showing obvious synergistic effect during degradation process of phenol, and the reaction rate constants of heat/AC-activated and heat/ZVI-activated persulfate are respectively, 0.0512 and 0.0561 min-1. The radical scavenger experiments proved that both SO4 - • and OH• are significant radicals in degradation of phenol by ZVI-activated and AC-activated persulfate, and SO4 - • are predominant radicals in degradation of phenol.

Keywords

Activated Persulfate, Free Radicals, Oxidative Degradation, Phenol Degration, Reaction Kinetics.
User
Notifications
Font Size