The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Herein we report the Fe3O4-oleate (Fe-OA) nanoparticles (NPs) incorporated poly (vinyl alcohol) (PVA), a series of highly flexible nanocomposites (Fe-OA-PVA) were prepared by the solution casting technique. The nanocomposites were fabricated with different weights per cent (0.25 wt. %, 0.5wt. %, and 0.75wt. %, 1wt. %, and 2wt. %, respectively) of Fe3O4-OA into the PVA matrix. The synthesized nanocomposites were characterized using FTIR, UV–Vis, XRD, Contact angle, Impedance spectroscopy, SEM and EDS. UV-Vis spectra initially confirmed the interaction of Fe-OA NPs into the PVA matrix by observing peaks at 223nm, 325nm and 410nm. The FTIR investigation uncovered evidence of an interaction between the NPs and the PVA polymer matrix. The incorporation of NPs into a polymer matrix shows an enhancement in various properties due to its nature. The surface properties of the composites were studied using the contact angle technique. The electric properties of Fe3O4-oleate/PVA nanocomposite films were estimated using impedance spectroscopy. Due to the dispersion of Fe3O4-oleate NPs into the PVA matrix, we obtained the polarization in dipoles, resulting in good AC-Conductivity properties. These synthesized nanocomposites may potentially use for electronic applications.

Keywords

Poly(Vinyl Alcohol), Nanocomposites, Dielectric Constant, Electrical Property, Fe3O4-Oleate NPs.
User
Notifications
Font Size