Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Apigenin: Review of Mechanisms of Action as Antimalarial


Affiliations
1 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java,, Indonesia
2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, West Java,, Indonesia
3 Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, West Java,, Indonesia
     

   Subscribe/Renew Journal


Apigenin is a natural compound that is present in a number of plants such as celery, parsley, grapes, chamomile, onions, maize, tea, sugar, and sprouts belonging to the flavone subclass of flavonoid. Like vitamins, anti-inflammatory medications, vasodilators, anticoagulation, antidiabetes, anticancer, antimalarial drugs, apigenin has many pharmacological functions. The main therapeutic agent for malarial disease is apigenin, based on in vitro, in vivo, and silico research. The purpose of the review is to describe the mechanism of apigenin as an antimalarial agent. Apigenin has antimalarial mechanisms that are confirmed to induce ABCC1 transporters, inhibit protein kinase (Pf RIO-2 kinase) (right open reading frame-2 protein kinase), and act as an antioxidant.

Keywords

Plasmodium falciparum, Flavonoid, Apigenin, Antimalarial, Antioxidant.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Palacz-Wrobel M, Borkowska P, Paul-Samojedny M, Kowalczyk M, Fila-Danilow A, Suchanek-Raif R, et al. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages. Biomed Pharmacother [Internet]. 2017; 93:1205–12. doi.org/10.1016/j.biopha.2017.07.054
  • Groot H, Rauen U. Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam Clin Pharmacol. 1998; 12(3):249–55.
  • Nijveldt RJ, Van Nood E, Van Hoorn DEC, Boelens PG, Van Norren K, Van Leeuwen PAM. Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001; 74(4):418–25.
  • Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review [Internet]. Vol. 20, International Journal of Food Properties. Taylor & Francis; 2017. p. 1197–238. doi.org/10.1080/10942912.2016.1207188
  • Lehane AM, Saliba KJ. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res Notes. 2008 Jun; 1:26.
  • Salehi B, Venditti A, Sharifi-rad M, Kr D, Sharifi-rad J, Durazzo A, et al. The Therapeutic Potential of Apigenin. 2019;
  • Adeoye AO, Olanlokun JO, Tijani H, Lawal SO, Babarinde CO, Akinwole MT, et al. Molecular docking analysis of apigenin and quercetin from ethylacetate fraction of Adansonia digitata with malaria-associated calcium transport protein: An in silico approach. Heliyon. 2019; 5(9):e02248. doi.org/10.1016/j.heliyon.2019.e02248
  • Nag S, Prasad K, Bhowmick A, Deshmukh R, Trivedi V. PfRIO-2 Kinase is a Potential Therapeutic Target of Antimalarial Protein Kinase Inhibitors. Curr Drug Discov Technol. 2013; 10(1):85–91.
  • Amiri M, Nourian A, Khoshkam M, Ramazani A. Apigenin inhibits growth of the Plasmodium berghei and disrupts some metabolic pathways in mice. Phyther Res. 2018; 32(9):1795–802.
  • Fallatah O, Georges E. Apigenin-induced ABCC1-mediated efflux of glutathione from mature erythrocytes inhibits the proliferation of Plasmodium falciparum. Int J Antimicrob Agents. 2017; 50(5):673–7. doi.org/10.1016/j.ijantimicag.2017.08.014
  • Herrmann KM. The Shikimate Pathway as an Entry to Aromatic Secondary Metabolism’ Klaus. 1981; 8(7):667–70.
  • Austin MB, Noel JP. The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep. 2003; 20(1):79–110.
  • Forkmann G. Flavonoids as Flower Pigments: The Formation of the Natural Spectrum and its Extension by Genetic Engineering. Plant Breed. 1991; 106(1):1–26.
  • Martens S, Forkmann G, Matern U, Lukačin R. Cloning of parsley flavone synthase I. Phytochemistry. 2001; 58(1):43–6.
  • Lee H, Kim BG, Kim M, Ahn JH. Biosynthesis of two flavones, apigenin and genkwanin, in Escherichia coli. J Microbiol Biotechnol. 2015; 25(9):1442–8.
  • Tapas A, Sakarkar D, Kakde R. The Chemistry and Biology of Bioflavonoids. 2008; 1(3):132–43.
  • Li B, Robinson DH, Birt DF. Evaluation of properties of apigenin and [G-3H]apigenin and analytic method development. J Pharm Sci. 1997; 86(6):721–5.
  • Zhang J, Liu D, Huang Y, Gao Y, Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharm. 2012; 436(1–2):311–7. doi.org/10.1016/j.ijpharm.2012.07.002
  • Tang D, Chen K, Huang L, Li J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin Drug Metab Toxicol. 2017; 13(3):323–30. doi.org/10.1080/17425255.2017.1251903
  • Liu Y, Hu M. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metab Dispos. 2002; 30(4):370–7.
  • Gradolatto A line, Basly J-P, Berges R, Teyssier C, Chagnon M-C, Siess M-H ´le ´ne. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos. 2005; 33(1):49–54.
  • Gradolatto A, Canivenc-Lavier MC, Basly JP, Siess MH, Teyssier C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab Dispos. 2004; 32(1):58–65.
  • Tang L, Zhou J, Yang CH, Xia BJ, Hu M, Liu ZQ. Systematic studies of sulfation and glucuronidation of 12 flavonoids in the mouse liver S9 fraction reveal both unique and shared positional preferences. J Agric Food Chem. 2012; 60(12):3223–33.
  • Thillainayagam M, Ramaiah S. Mosquito, malaria and medicines – A review. Res J Pharm Technol. 2016; 9(8):1268–76.
  • Mawson AR. The pathogenesis of malaria: A new perspective. Pathog Glob Health. 2013; 107(3):122–9.
  • Zambare KK, Thalkari AB, Tour NS. A Review on Pathophysiology of Malaria: A Overview of Etiology, Life Cycle of Malarial Parasite, Clinical Signs, Diagnosis and Complications. Asian J Res Pharm Sci. 2019; 9(3):226.
  • Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother. 2018; 104(4):8–27. doi.org/10.1016/j.biopha.2018.05.009
  • Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol [Internet]. 2003; 206(21):3735–44.
  • Greenwood BM, Fidock DA, Kyle DE, Kappe SHI, Alonso PL, Collins FH, et al. Malaria : progress , perils , and prospects for eradication Find the latest version : Review series Malaria : progress , perils , and prospects for eradication. J Clin Invest. 2008; 118(4):1266–76.
  • Francis P, Suseem S. Antimalarial Potential of Isolated Flavonoids-A Review. Res J Pharm Technol. 2017; 10(11):4057.
  • Mcconkey GA. Targeting the shikimate pathway in the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother. 1999; 43(1):175–7.
  • Fitzpatrick T, Ricken S, Lanzer M, Amrhein N, Macheroux P, Kappes B. Subcellular localization and characterization of chorismate synthase in the apicomplexan Plasmodium falciparum. Mol Microbiol. 2001; 40(1):65–75.
  • Sensharma P, Anbarasu K, Jayanthi S. In silico identification of novel inhibitors against plasmodium falciparum triosephosphate isomerase from anti-folate agents. Res J Pharm Technol. 2018; 11(8):3367–70.
  • Sardarian A, Douglas KT, Read M, Sims PFG, Hyde JE, Chitnumsub P, et al. Pyrimethamine analogs as strong inhibitors of double and quadruple mutants of dihydrofolate reductase in human malaria parasites. 2003;
  • Nduati E, Hunt S, Kamau EM, Nzila A. 2 , 4-Diaminopteridine-Based Compounds as Precursors for De Novo Synthesis of Antifolates : a Novel Class of Antimalarials. 2005; 49(9):3652–7.
  • Nzila A. The past , present and future of antifolates in the treatment of Plasmodium falciparum infection. 2006; (4):1043–54.
  • Preuss J, Jortzik E, Becker K. Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life. 2012; 64(7):603–11.
  • Dunn CR, Banfield MJ, Barker JJ, Higham CW, Moreton KM, Turgut-Balik D, et al. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol. 1996; 3(11):912–5.
  • Chan M, Tan DSH, Sim TSÃ. Plasmodium falciparum pyruvate kinase as a novel target for antimalarial drug-screening. 2007; 125–31.
  • Parthasarathy S, Ravindra G, Balaram H, Balaram P, Murthy MRN. Structure of the Plasmodium falciparum Triosephosphate Isomerase - Phosphoglycolate Complex in Two Crystal Forms : Characterization of Catalytic Loop Open and Closed Conformations in the Ligand-Bound State. 2002; 13178–88.
  • Ring CS, Sun E, McKerrow JH, Lee GK, Rosenthal PJ, Kuntz ID. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A. 1993; 90(8):3583–7.
  • Razakantoanina V, Phung NKP, Jaureguiberry G. Antimalarial activity of new gossypol derivatives. Parasitol Res. 2000; 86(8):665–8.
  • Cameron A, Read J, Tranter R, Winter VJ, Sessions RB, Brady LL, et al. Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity. J Biol Chem. 2004; 279(30):31429–39.
  • Shenai BR, Sijwali PS, Singh A, Rosenthal PJ. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000; 275(37):29000–10.
  • Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci U S A. 2002; 99(2):990–5.
  • Krishnan MK, Williamson KC. The proteasome as a target to combat malaria: Hits and Misses Karthik. Physiol Behav. 2017; 176(3):139–48.
  • Rosenthal PJ. Cysteine proteases of malaria parasites. Int J Parasitol. 2004; 34(13–14):1489–99.
  • Rosenthal PJ, Olson JE, Lee GK, Palmer JT, Klaus JL RD. Antimalarial effects of vinyl sulfonyl cysteine proteinase inhibitors. Antimicrob Agents Chemother. 1996; 40(7):1600–3.
  • Sullivan DJ. Theories on malarial pigment formation and quinoline action. 2002; 32:1645–53.
  • Lim L, Mcfadden GI. The evolution , metabolism and functions of the apicoplast. 2010; 749–63.
  • Roos DS, Crawford MJ, Donald RGK, Fraunholz M, Harb OS, He CY, et al. Mining the Plasmodium genome database to define organellar function : what does the apicoplast do ? 2002; (1):35–46.
  • Ralph SA, D’Ombrain MC, McFadden GI. The apicoplast as an antimalarial drug target. Drug Resist Updat. 2001; 4(3):145–51.
  • Pradel G, Schlitzer M. Antibiotics in Malaria Therapy and their Effect on the Parasite Apicoplast. Curr Mol Med. 2010; 10(3):335–49.
  • Ohrt C, Willingmyre GD, Lee P, Knirsch C, Milhous W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob Agents Chemother. 2002; 46(8):2518–24.
  • Lell B, Ruangweerayut R, Wiesner J, Missinou MA, Schindler A, Baranek T, et al. Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother. 2003; 47(2):735–8.
  • Guggisberg AM, Amthor RE, Odom AR. Isoprenoid biosynthesis in Plasmodium falciparum. Eukaryot Cell. 2014; 13(11):1348–59.
  • Jan-Ytzen van der Meer, Anna K. H. Hirsch. The isoprenoid-precursor dependence of Plasmodium spp. 2012; 721–8.
  • Wiesner J, Ziemann C, Hintz M, Reichenberg A, Ortmann R, Schlitzer M, et al. FR-900098, an antimalarial development candidate that inhibits the non-mevalonate isoprenoid biosynthesis pathway, shows no evidence of acute toxicity and genotoxicity. Virulence 2016; 7(6):718–28. doi.org/10.1080/21505594.2016.1195537
  • Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A. 1998; 95(21):12352–7.
  • Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med. 2001; 7(2):167–73.
  • Patel SN, Kain KC. Atovaquone/proguanil for the prophylaxis and treatment of malaria. Expert Rev Anti Infect Ther. 2005; 3(6):849–61.
  • Deng X, Kokkonda S, El Mazouni F, White J, Burrows JN, Kaminsky W, et al. Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J Med Chem. 2014; 57(12):5381–94.
  • Diao Y, Lu W, Jin H, Zhu J, Han L, Xu M, et al. Discovery of diverse human dihydroorotate dehydrogenase inhibitors as immunosuppressive agents by structure-based virtual screening. J Med Chem. 2012; 55(19):8341–9.
  • K. Vyas V, Ghate M. Recent Developments in the Medicinal Chemistry and Therapeutic Potential of Dihydroorotate Dehydrogenase (DHODH) Inhibitors. Mini-Reviews Med Chem. 2011; 11(12):1039–55.
  • Kirk K. Membrane transport in the malaria-infected erythrocyte. Vol. 81, Physiological Reviews. 2001. p. 495–537.
  • Staines H, Ellory J, Chibale K. The New Permeability Pathways: Targets and Selective Routes for the Development of New Antimalarial Agents. Comb Chem High Throughput Screen. 2005; 8(1):81–8.
  • Staines HM, Dee BC, Brien MO, Lang H, Englert H, Horner HA, et al. Furosemide analogues as potent inhibitors of the new permeability pathways of Plasmodium falciparum -infected human erythrocytes. 2004; 133:315–8.
  • Calas M, Ancelin ML, Cordina G, Portefaix P, Piquet G, Vidal-Sailhan V, et al. Antimalarial activity of compounds interfering with Plasmodium falciparum phospholipid metabolism: Comparison between mono- and bisquaternary ammonium salts. J Med Chem. 2000; 43(3):505–16.
  • Davies GM, Barrett-bee KJ, Jude DA, Lehan M, Nichols WW, Pinder PE, et al. (6S)-6-Fluoroshikimic Acid, an Antibacterial Agent Acting onthe Aromatic Biosynthetic Pathway. 1994; 38(2):403–6.
  • Gavigan CS, Dalton JP, Bell A. The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol. 2001 Sep; 117(1):37–48.
  • Eggleson KK, Duffin KL, Goldberg DE. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem. 1999; 274(45):32411–7.
  • Olafson KN, Ketchum MA, Rimer JD, Vekilov PG. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc Natl Acad Sci U S A. 2015 Apr; 112(16):4946–51.
  • Corrêa Soares JBR, Menezes D, Vannier-Santos MA, Ferreira-Pereira A, Almeida GT, Venancio TM, et al. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl Trop Dis. 2009; 3(7).
  • Wang J, Zhang C-J, Chia WN, Loh CCY, Li Z, Lee YM, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015; 6:10111.
  • Lehane AM, Saliba KJ. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. 2008; 5:1–5.
  • Cole SPC, Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci. 2006; 27(8):438–46.
  • Kirk K, Lehane AM. Membrane transport in the malaria parasite and its host erythrocyte. Biochem J. 2014; 457(1):1–18.
  • Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009; 390(3):191–214.
  • Atamna H, Ginsburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol. 1993; 61(2):231–41.
  • Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, et al. Oxidative stress in Malaria. Int J Mol Sci. 2012; 13(12):16346–72.
  • Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: Host-parasite interactions. Int J Parasitol. 2004; 34(2):163–89.
  • Turrini F, Ginsburg H, Bussolino F, Pescarmona GP, Serra M V, Arese P. Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage. Blood. 1992; 80(3):801–8.
  • Barrand MA, Winterberg M, Ng F, Nguyen M, Kirk K, Hladky SB. Glutathione export from human erythrocytes and Plasmodium falciparum malaria parasites. Biochem J. 2012; 448(3):389–400.
  • Müller S. Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules. 2015 Jun; 20(6):10511–34.
  • Karwatsky J, Lincoln MC, Leimanis ML, Georges E. Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress. 2007; 73:1727–37.
  • Leslie E, Deelay R, Cole S. Bioflavonoid Stimulation Of Glutathione Transport By The 190-kDa. 2003; 31(01):11–5.
  • Fallatah O, Georges E. Apigenin-induced ABCC1-mediated efflux of glutathione from mature erythrocytes inhibits the proliferation of Plasmodium falciparum. Int J Antimicrob Agents. 2017; 50(5):673–7.
  • Gopalakrishnan A, Kumar N. Anti-malarial action of Artesunate involves DNA damage mediated by Reactive Oxygen Species. Antimicrob Agents Chemother. 2014; (10).
  • Zhao Y, Kappes B, Yang J, Franklin RM. Molecular cloning, stage‐specific expression and cellular distribution of a putative protein kinase from Plasmodium falciparum. Eur J Biochem. 1992; 207(1):305–13.
  • Doerig C, Abdi A, Bland N, Eschenlauer S, Dorin-Semblat D, Fennell C, et al. Malaria: Targeting parasite and host cell kinomes. Biochim Biophys Acta - Proteins Proteomics. 2010; 1804(3):604–12. doi.org/10.1016/j.bbapap.2009.10.009
  • Kato K, Sugi T, Iwanaga T. Roles of Apicomplexan protein kinases at each life cycle stage. Parasitol Int. 2012; 61(2):224–34. doi.org/10.1016/j.parint.2011.12.002
  • Green JL, Rees-Channer RR, Howell SA, Martin SR, Knuepfer E, Taylor HM, et al. The motor complex of Plasmodium falciparum: Phosphorylation by a calcium-dependent protein kinase. J Biol Chem. 2008; 283(45):30980–9.
  • Jones ML, Cottingham C, Rayner JC. Effects of calcium signaling on Plasmodium falciparum erythrocyte invasion and post-translational modification of gliding-associated protein 45 (PfGAP45). Mol Biochem Parasitol. 2009; 168(1):55–62.
  • Sharma P, Chem JB. PfPKB , a Novel Protein Kinase B-like Enzyme from Plasmodium falciparum : I . PfPKB , a Novel Protein Kinase B-like Enzyme from Plasmodium falciparum. 2004;
  • Ward GE, Fujioka H, Aikawa M, Miller LH. staurosporin inhibits invasion RBC.
  • Doerig C, Billker O, Pratt D, Endicott J. Protein kinases as targets for antimalarial intervention : and targeting host cell enzymes. 2005; 1754:132–50.
  • Leykauf K, Treeck M, Gilson PR, Nebl T, Braulke T, Cowman AF, et al. Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLoS Pathog. 2010; 6(6).
  • Möskes C, Burghaus PA, Wernli B, Sauder U, Dürrenberger M, Kappes B. Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N-terminal membrane anchor motifs. Mol Microbiol. 2004; 54(3):676–91.
  • Droucheau E, Primot A, Thomas V, Mattei D, Knockaert M, Richardson C, et al. Plasmodium falciparum glycogen synthase kinase-3 : molecular model , expression , intracellular localisation and selective inhibitors. 2004; 1697:181–96.
  • Dorin D, Semblat J, Poullet P, Alano P, Goldring JPD, Whittle C, et al. PfPK7 , an atypical MEK-related protein kinase , reflects the absence of classical three-component MAPK pathways in the human malaria parasite Plasmodium falciparum. 2005; 55:184–96.
  • Billker O, Dechamps S, Tewari R, Wenig G, Franke-fayard B, Brinkmann V. Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite. 2004; 117:503–14.
  • Mattox AK, Li J, Adamson DC. Stopping cancer in its tracks: using small molecular inhibitors to target glioblastoma migrating cells. Curr Drug Discov Technol. 2012; 9(4):294–304.
  • Li X-J, Kong D-X, Zhang H-Y. Chemoinformatics approaches for traditional Chinese medicine research and case application in anticancer drug discovery. Curr Drug Discov Technol. 2010; 7(1):22–31.
  • Muregi FW. Antimalarial drugs and their useful therapeutic lives: rational drug design lessons from pleiotropic action of quinolines and artemisinins. Curr Drug Discov Technol. 2010 Dec; 7(4):280–316.
  • Köhler I, Jenett-Siems K, Eich E, Siems K, Hernandez MA, Ibarra RA, et al. In vitro Antiplasmodial Investigation of Medicinal Plants from El Salvador. Zeitschrift fur Naturforsch - Sect C J Biosci. 2002; 57(3–4):277–81.
  • Way T Der, Kao MC, Lin JK. Apigenin Induces Apoptosis through Proteasomal Degradation of HER2/neu in HER2/neu-overexpressing Breast Cancer Cells via the Phosphatidylinositol 3-Kinase/Akt-dependent Pathway. J Biol Chem. 2004; 279(6):4479–89.
  • Sameer J, Vijay S, Chandrakant M. Daily consumption of antioxidants:-Prevention of disease is better than cure. Asian J Pharm Res. 2013; 3(1):33–9.
  • Sutrakar S, Singh U, Verma P, Agrawal P, Damor A. Hemozoin Induced Anemia and Dyserythropoisis: A Case Report. Asian J Res Chem. 2012; 5(8):996–7.
  • Ahmad R, Srivastava AK. Purification and biochemical characterization of cytosolic glutathione-S-transferase from malarial parasites Plasmodium yoelii. Parasitol Res. 2007 Feb; 100(3):581–8.
  • Müller S, Gilberger TW, Krnajski Z, Lüersen K, Meierjohann S, Walter RD. Thioredoxin and glutathione system of malaria parasite Plasmodium falciparum. Protoplasma. 2001; 217(1–3):43–9.
  • Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem. 2000; 275(51):40180–6.
  • Kavishe RA, Koenderink JB, McCall MBB, Peters WHM, Mulder B, Hermsen CC, et al. Short report: Severe Plasmodium falciparum malaria in Cameroon: associated with the glutathione S-transferase M1 null genotype. Am J Trop Med Hyg. 2006 Nov; 75(5):827–9.
  • Hassan GI, Gregory U, Maryam H. Serum ascorbic acid concentration in patients with acute Falciparum malaria infection: possible significance. Brazilian J Infect Dis an Off Publ Brazilian Soc Infect Dis. 2004; 8(5):378–81.
  • Caulfield LE, Richard SA, Black RE. Undernutrition as an underlying cause of malaria morbidity and mortality in children less than five years old. Am J Trop Med Hyg. 2004 Aug; 71(2 Suppl):55–63.
  • Metzger A, Mukasa G, Shankar AH, Ndeezi G, Melikian G, Semba RD. Antioxidant status and acute malaria in children in Kampala, Uganda. Am J Trop Med Hyg. 2001; 65(2):115–9.
  • Golenser J, Domb A, Teomim D, Tsafack A, Nisim O, Ponka P, et al. The treatment of animal models of malaria with iron chelators by use of a novel polymeric device for slow drug release. J Pharmacol Exp Ther. 1997; 281(3):1127–35.
  • Tyagi AG, Tyagi RA, Choudhary PR, Shekhawat JS. Study of antioxidant status in malaria patients. Int J Res Med Sci. 2017; 5(4):1649.
  • Ginwala R, Bhavsar R, Chigbu DGI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants. 2019; 8(2):1–30.
  • Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol. 2017; 7(6).
  • Farombi EO, Shyntum YY, Emerole GO. Influence of chloroquine treatment and Plasmodium falciparum malaria infection on some enzymatic and non-enzymatic antioxidant defense indices in humans. Drug Chem Toxicol. 2003; 26(1):59–71.
  • Scott MD, Meshnick SR, Williams RA, Chiu DT, Pan HC, Lubin BH, et al. Qinghaosu-mediated oxidation in normal and abnormal erythrocytes. J Lab Clin Med. 1989; 114(4):401–6.
  • Krungkrai SR, Yuthavong Y. The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans R Soc Trop Med Hyg. 1987; 81(5):710–4.
  • Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A. 2011; 108(28):11405–10.
  • Dattani JJ, Rajput DK, Moid N, Highland HN, George LB, Desai KR. Ameliorative effect of curcumin on hepatotoxicity induced by chloroquine phosphate. Environ Toxicol Pharmacol. 2010; 30(2):103–9.
  • Kumar Mishra S, Singh P, Rath SK. Protective Effect of Quercetin on Chloroquine-Induced Oxidative Stress and Hepatotoxicity in Mice. Malar Res Treat. 2013; 2013:1–10.

Abstract Views: 178

PDF Views: 0




  • Apigenin: Review of Mechanisms of Action as Antimalarial

Abstract Views: 178  |  PDF Views: 0

Authors

Faizal Hermanto
Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java,, Indonesia
Anas Subarnas
Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java,, Indonesia
Afifah B. Sutjiatmo
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, West Java,, Indonesia
Afiat Berbudi
Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, West Java,, Indonesia

Abstract


Apigenin is a natural compound that is present in a number of plants such as celery, parsley, grapes, chamomile, onions, maize, tea, sugar, and sprouts belonging to the flavone subclass of flavonoid. Like vitamins, anti-inflammatory medications, vasodilators, anticoagulation, antidiabetes, anticancer, antimalarial drugs, apigenin has many pharmacological functions. The main therapeutic agent for malarial disease is apigenin, based on in vitro, in vivo, and silico research. The purpose of the review is to describe the mechanism of apigenin as an antimalarial agent. Apigenin has antimalarial mechanisms that are confirmed to induce ABCC1 transporters, inhibit protein kinase (Pf RIO-2 kinase) (right open reading frame-2 protein kinase), and act as an antioxidant.

Keywords


Plasmodium falciparum, Flavonoid, Apigenin, Antimalarial, Antioxidant.

References