Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Evaluation of Antihyperlipidemic Activity of Leaves of Cassia Tora


Affiliations
1 Assistant Professors, KVSR Siddhartha college of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh., India
2 Assistant Professors, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh., India
3 IV B Pharmacy Students, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh., India
     

   Subscribe/Renew Journal


Aim: To evaluate the antihyperlipidemic activity of leaves of cassia tora Objective: Hyperlipidemia is a clinical condition causing lethal diseases like atherosclerosis, myocardial infarction etc that ultimately leads to death. Several works have been reported that the extracts of many plants have antihyperlipidemic activity. Cassia tora is used for a long time as a daily vegetable in many countries. It consists of phytochemical constituents like flavonoids which lowers blood cholesterol level. Materials and Methods: Materials used: Antihyperlipidemic activity of Cassia tora was screened by a model, Cholesterol diet induced hyperlipidemia. Marker enzymes like LDH, LDL, VLDL, total protein, total cholesterol, AST, ALP, ALT,SOD, Catalase, LPO and histopathology of myocardium and aorta carried out. Results: Flavonoids of leaves of Cassia tora treated group showed significant decrease in LDL-Cholesterol, total cholesterol, triglycerides, AST, ALT, ALP and increase in HDL cholesterol, albumin, total protein and further was concluded by histopathological studies. Conclusion: From result, it was concluded that flavonoid of leaves of Cassia tora shows antihyperlipidemic activity in the heart of rats.

Keywords

Antihyperlipidemic, Hypercholesteremia, Cholesterol-diet, Atherosclerosis, Myocardial infarction.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Dabriyal, RM, Narayana, DBA, Ayurvedic Herbal Raw Material, The Eastern Pharmacist. 1998: 31-35.
  • K. Kousalya, T. Priya, P. Venkatalakshmi. Studies on the Anti inflammatory potential of selected medicinal plants in vitro. Research J. Pharm. And Tech. 2020; 13(7): 3147-3150
  • Kambooj V. Herbal medicine. Curr Sci. 2000; 78:35–9.
  • Phadke SA. A review on lipid lowering activities of Ayurvedic and other herbs. Nat Prod Radiance. 2007; 6:81–9.
  • Mangathayaru K, Balakrishna K, Kuruvilla S, Reddy C, Maheshwara U. Modulatory Effect of Erythrinavareigata on Experimental Hyperlipidaemia in Male Wistar Rats. Pharmacog Res. 2009;1:202–7. 6. Vinuthan MK, Girish Kumar V, Narayanaswamy N, Veena T. Lipid lowering effect of aqueous leaves extract of Murrayakoenigii (curry leaf) on alloxan-induced male diabetic rats. Pharmacog Mag. 2007;3:112–5.
  • Saravana KA, Mazumder A, Saravanan VS. Antihyperlipidemic activity of Camellia sinensis leaves in Triton WR-1339 induced albino rats. Pharmacog Mag. 2008;4:60–4.
  • Arulmozhi V, Krishnaveni M, Karthishwaran K, Dhamodharan G, Mirunalini S. Antioxidant and antihyperlipidemic effect of Solanumnigrum fruit extract on the experimental model against chronic ethanol toxicity. Pharmacog Mag. 2010;6:42–50.
  • Devkar RV, Ramachandran AV, Patel DK. Assessment of lipid lowering effect of Sidarhomboidea Roxb. Methanolic extract in experimentally induced hyperlipidemia. J Young Pharma. 2009;1:233.
  • Nitin Mahurkar, S.M Sayeed ul hasan, S.Mutaal Quadri. Antihyperlipidemic effect of polyherbal formulation (PHF) in high fat diet induced hyperlipidemia. Res. J. Pharm. Dosage forms and Tech. 2013; 7(1): 11-14.
  • Jain, S.K., Medicinal Plants, National Book Trust, New Delhi., 1968,p.37.
  • Kishan Jadhav, Priyana Kapare, Divya V Khairmode, Chaitali H Keskar. Genetic insights of cholesterol and atherosclerosis; complex biology. The Journal of Infectitious Diseases. 2018; 5(1): 6-19.
  • Robert WM, Thomas PB, Laurence LB, John SL, Keith LP. Goodman and Gilman;s Pharmacological Basis of Therapeutics. 11th ed. New Delhi: McGraw-Hill.1998 P. 933-81.
  • Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis, detection and treatment of Achilles tendon xanthomas. Eur. J. Clin. Invest. 2003; 35 (4): 236-44.
  • T. Sudha, D. Akila Devi, L. Kaviarasan. Antihyperlipidemic effect of Stevia rebaudiana on Alloxan induced diabetic rats. Asian. J. Pharm. Tech. 2017; 7(4);202-208.
  • Preeti Tiwari. Antihyperlipidemic potential of Balarishta prepared by traditional and modern method in high fat diet induced hyperlipidemic rats. Asian Journal of Research in Pharmaceutical Sciences. 2014; 4(1).
  • Singh R.B., Mengi S.A., Arneja A.S., Dhalla N.S.: Exp. Clin. Cardiol. 2002; 26(1).
  • S. Acharya, G.K. Pash, S. Pattnail, RR Chhetree. Antihyperglycemic and antihyperlipidemic activity of Acacia suma (Roxb) barks. Research J. Pharmacology and Pharmacodynamics 2011;3(2):67-71.
  • J N and Dajani E: Antihyperlipidemic agents, inn screening methods in toxicology, Academic Press Newyork and London, 2003 Vol. II, 1971: 121.
  • Preeti tiwari. Evaluation of Antihyperlipidemic potential of amritarishta prepared by traditional and modern methods in hyperlipidemic rats. Research Journal of Pharmacognosy and Phytochemistry. 2013; 5 (6).
  • Sarvesh C.N, Jennifer Fernandes, Suresh Janadri. Antihyperlipidemic activity of Achyranthus aspera linn leaves on cholesterol induced hyperlipidemia in rats. Research J Pharm and Tech. 2017: 10(1): 200-204.
  • Srikanth Jeyabalan, Muralidharan Palayan. Antihyperlipidemic activity of Sapindus emarginatus in triton WR-1339 induced albino rats. Research J. Pharm and Tech. 2009; 2(2): 319-323.
  • Nadkarni, R.M., Indian Materia Medica, Vol I, Popular Book Depot, Mumbai, 1954, p.291.
  • Shibata, S., Morishita, E., Kaheda, M., Kimura, Y., Takido, M and Takashashi, S. Chem. Pharm. Bull, 1969, 17,454.
  • Raghunathan K., Hariharan V. And Rangaswami S., Chrysophanol-1-β-gentiobioside, a new anthraquinone glycoside from Cassia tora Linn. Indian J. Chem. 1974, 12,1251-1253.
  • Tian-yang Wang, Qing Li Kai-shun B Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences. 2018; 13(1) 12-23.
  • Sampada S Sawant, Vishal R. Randive, Savita R Kulkarni. Lectins from seeds of Abrus precatorius: Evaluation of anti-diabetic & anti-hyperlipidemic potential in diabetic rats. Asian Journal of Pharmaceutical Research. 2017; 7(2).
  • Jadhav Sameer S, Salunkhi Vijay R, Magdum Chandrakant. S. Daily consumption of antioxidants: Prevention of disease is better than cure. Asian J. Pharm. Res. 2013; 3(1): 33-39.
  • H.M. Abdallah, F.M. Almowallad, A. Esmat, et al. Anti-inflammatory activity of flavonoids from Chrozophora tinctoria Phytochem Lett. 2015; 13: 74-80
  • Rang HP, Dale MM, Ritter JM, Flower RJ. Rang and dale’s pharmacology. Churchill Livingstone Elsevier; 2007: 6th edition: 321-30..

Abstract Views: 88

PDF Views: 0




  • Evaluation of Antihyperlipidemic Activity of Leaves of Cassia Tora

Abstract Views: 88  |  PDF Views: 0

Authors

Iswarya Obilineni
Assistant Professors, KVSR Siddhartha college of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh., India
Jangam Divya Latha
Assistant Professors, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh., India
Kamireddy Srikala
Assistant Professors, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh., India
Gummadi Asha
IV B Pharmacy Students, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh., India
Marupilla Amulya
IV B Pharmacy Students, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh., India
Vaddeswarapu Rajani
Assistant Professors, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh., India

Abstract


Aim: To evaluate the antihyperlipidemic activity of leaves of cassia tora Objective: Hyperlipidemia is a clinical condition causing lethal diseases like atherosclerosis, myocardial infarction etc that ultimately leads to death. Several works have been reported that the extracts of many plants have antihyperlipidemic activity. Cassia tora is used for a long time as a daily vegetable in many countries. It consists of phytochemical constituents like flavonoids which lowers blood cholesterol level. Materials and Methods: Materials used: Antihyperlipidemic activity of Cassia tora was screened by a model, Cholesterol diet induced hyperlipidemia. Marker enzymes like LDH, LDL, VLDL, total protein, total cholesterol, AST, ALP, ALT,SOD, Catalase, LPO and histopathology of myocardium and aorta carried out. Results: Flavonoids of leaves of Cassia tora treated group showed significant decrease in LDL-Cholesterol, total cholesterol, triglycerides, AST, ALT, ALP and increase in HDL cholesterol, albumin, total protein and further was concluded by histopathological studies. Conclusion: From result, it was concluded that flavonoid of leaves of Cassia tora shows antihyperlipidemic activity in the heart of rats.

Keywords


Antihyperlipidemic, Hypercholesteremia, Cholesterol-diet, Atherosclerosis, Myocardial infarction.

References