Open Access
Subscription Access
Open Access
Subscription Access
Green Synthesis and Standardization of Biologically Synthesized Silver Nanoparticles
Subscribe/Renew Journal
The biological silver nanoparticle was synthesized extracellularly by using Musa balbisiana. The leaf extract has been used as reducing agent in the process of nanoparticles synthesis. In 50 ml leaf extract volume of AgNO3 stock solution was added to make finally the concentration as 1 mM of AgNO3 and allowed to shake in an incubator for several hours in the dark. The changed color was considered as the primary indication of nanoparticles formation. It was indicated that stable and 20-40nm roughly spherical shaped silver nanoparticles was formed. To standardize the nanoparticles biosynthesis different physical parameters like substrate concentration (0-8 mM), pH of range 5 to 12, temperature range of 5 to 500°C, incubation time range of 0 to 120 hrs and salinity of 0.1-1.0% were investigated. It was reported that 4mM AgNO3 conc, pH of 9, temperature 300°C, incubation time 72h and 0.2% salinity were found to be optimum for the synthesis and stability of the silver nanoparticles.
Keywords
Silver nanoparticles, Musa balbisiana, Optimising parameters, Standardization
Subscription
Login to verify subscription
User
Font Size
Information
- Pranati T, Anitha R, Rajeshkumar S, Lakshmi T. Preparation of Silver nanoparticles using Nutmeg oleoresin and its Antimicrobial activity against Oral pathogens. Research Journal of Pharmacy and Technology. 2019;12(6):2799-803.
- Karande KM, Gawade SP. Synthesis of Nanosilver and its Comparative Evaluation of Cytotoxic Activity. Research Journal of Pharmacy and Technology. 2020;13(2):659-63.
- Patil RY, Patil SA, Chivate ND, Patil YN. Herbal drug nanoparticles: advancements in herbal treatment. Research Journal of Pharmacy and Technology. 2018;11(1):421-6.
- Rajakumari K. Nanotherapy for Cancer-A Review. Research Journal of Pharmacy and Technology. 2020;13(3):1575-9.
- Thyagarajan R, Namasivayam S, Narendrakumar G, Singh V, Samydurai S. Evaluation of in Vitro Drug Controlled Release of Biocompatible Metallic and Non Metallic Nanoparticles Incorporated Anti Bacterial Antibiotics and Their Anti Biofilm Activity Against E. coli. Research Journal of Pharmacy and Technology. 2015;8(3):316-9.
- Usha AL, Kumari MK, Rani ER, Bhavani AK. A Novel Technique for Intra Transdermal Delivery of Drugs–Coated Polymeric Needles. Asian Journal of Pharmacy and Technology. 2020 Nov 18;10(4):289-95.
- Maikifi AS, Damodharan N. Nanodiamonds: Synthesis, Properties, Toxicities and an update on its effective uses in Anticancer Drugs Deliveries. Research Journal of Pharmacy and Technology. 2020 Nov 1;13(11):5529-33.
- Kengar MD, Jadhav AA, Kumbhar SB, Jadhav RP. A Review on Nanoparticles and its Application. Asian Journal of Pharmacy and Technology. 2019;9(2):115-24.
- Sadhasivam J, Sugumaran A, Narayanaswamy D. Nano Sponges: A Potential Drug Delivery Approach. Research Journal of Pharmacy and Technology. 2020 Jul 1;13(7):3442-8.
- Sadhasivam J, Sugumaran A, Narayanaswamy D. Nano Sponges: A Potential Drug Delivery Approach. Research Journal of Pharmacy and Technology. 2020 Jul 1;13(7):3442-8.
- Saxena A, Tripathi RM, Singh RP. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios. 2010 Jun 1;5(2):427-32.
Abstract Views: 114
PDF Views: 0