Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

The Implementation of Arduino Microcontroller Boards in Science: A Bibliometric Analysis from 2008 to 2022


Affiliations
1 Department of Chemistry Education, Universitas Negeri Jakarta, Jakarta 13220, Indonesia
     

   Subscribe/Renew Journal


The name "Ardui no " made its international debut in 2005, marking the age of Arduino as one of the most user-friendly and costeffective microcontroller boards (MCBs) for novices. The science implementation of Arduino boards in automation, networking and data acquisition has been increasing steadily. This study provides a thorough Bibliometric analysis from 1122 papers focused on the Scopus database of published microcontroller research, from the first year the Arduino keyword appeared in 2008 until 2022. Various science articles indexed by Scopus and referring to the use of Arduino MCBs are selected. The Bibliometric analysis explores comprehensive and general key attributes that form a trend from the Scopus articles based on authors, titles, publication years, keywords, citations, affiliations, abstracts, funding information, and languages. The generated data is visualized and analyzed to find patterns that appear within the time span. This study found a significant increase in the number of articles on Arduino boards in Biology, Physics, Chemistry, Science, and STEM category of the paper. Despite using only the Scopus database, this study opens up to view the direction of the growing application of Arduino boards in Science. The use of Bibliometric analysis maps thebscientific implementation of Arduino boards as an extensive guide for future collaborations in education and industry.

Keywords

Arduino, Bibliometric, Microcontroller Boards, Science, Sensor, STEM.
Subscription Login to verify subscription
User
Notifications
Font Size


  • ACM. Histroy. Retrieved November 28, 2022, from https://www.acm.org/about-acm/acmhistory.
  • ACS. Retrieved November 28, 2022, from https://www.acs.org/about/aboutacs.html.
  • Aksnes D. W., Langfeldt L., and Wouters P., “Citations, citation indicators, and research quality: An overview of basic concepts and theories,” SAGE Open, vol. 9, no. 1, pp. 1-7, 2019.
  • Ali, A. S., Zanzinger, Z., Debose, D., & Stephens, B. (2016). Open Source Building Science Sensors (OSBSS): A low-cost Arduino based plateform for long- term in door environmental data collection. Building and Environment , 100 , 114 - 126 . https://doi.org/10.1016/j.buildenv.2016.02.01 0.
  • Ardila, A. (2020). Who are the Spanish speakers? An examination of their linguistic, cultural, and societal commonalities and differences. Hispanic Journal of Behavioral Sciences, 4 2 ( 1 ) , 41 - 61 . https://doi.org/10.1177/0739986319899735.
  • Arduino. Hardware. Retrieved November 28, 2 0 2 2 , f r o m https://www.arduino.cc/en/hardware [7] Ayaz, S., Masood, N., & Islam, M. A. (2018). Predicting scientific impact based on h-index. Scientometrics , 1 1 4 ( 3 ) , 9 9 3 - 1 0 1 0 . https://doi.org/10.1007/s11192-017-2618-1.
  • Bhardwaj, V., Joshi, R., & Gaur, A. M. (2022). IoT-based smart health monitoring system for COVID-19. SN Computer Science, 3(2), 1-11. https://doi.org/10.1007/s42979-022-01015-1.
  • Bloem, J., Van Doorn, M., Duivestein, S., Excoffier, D., Maas, R., & Van Ommeren, E. (2014). The fourth industrial revolution. Things Tighten, 8(1), 11-15.
  • Buechley, L., Eisenberg, M., Catchen, J., & Crockett, A. (2008, April). The LilyPad Arduino: using computational textiles to investigate engagement, aesthetics, and diversity in computer science education. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 423- 4 3 2 ) . https://doi.org/10.1145/1357054.1357123.
  • Campanario, J. M. (2011). Empirical study of journal impact factors obtained using the classical two-year citation window versus a five-year citation window. Scientometrics, 8 7 ( 1 ) , 189 - 204 . https : / / doi.org/ https://doi.org/10.1007/s11192-010-0334-1.
  • Chichekian, T., Trudeau, J., & Jawhar, T. (2022). Disrupted Lessons in Engineering Robotics: Pivoting Knowledge Transfer From Physical to Virtual Learning Environments. Journal of Science Education and Technology, 1-15. https://doi.org/10.1007/s10956-022- 09973-0.
  • Christenson, C., Hart, D. J., Cardiff, M., Richmond, S., & Fratta, D. (2022). Developing Data ‐ Rich Viedo of Surface Water–Groundwater Interactions for Public Engagement. Groundwater, 60(3), 426-433. https://doi.org/10.1111/gwat.13165
  • Cressey, D. (2017). Age of the Arduino. Nature, 544(7648), 125-126.
  • Dachyar, M., Zagloel, T. Y. M., & Saragih, L. R. (2019). Knowledge growth and development: internet of things (IoT) research, 2006–2018. H e l i y o n , 5 ( 8 ) , e 0 2 2 6 4 . https://doi.org/10.1016/j.heliyon.2019.e02264 . [16] Daniel, E. H. (1997). Information Productivity Modeling: The Simon-Yule Approa ch. Encyclopedia of Library and Information Science: Volume 61-Supplement 24, 170. (pp. 173).
  • Darji, M., Parmar, N., Darji, Y., & Mehta, S. (2022, November). A Smart Home Automation System Based on Internet of Things (IoT) Using Arduino. In Futuristic Trends in Networks and Computing Technologies: Select Proceedings of Fourth International Conference on FTNCT 2021 (pp. 279-293). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5037- 7_19.
  • DesPortes, K., & DiSalvo, B. (2019, July). Trials and tribulations of Novices working with the Arduino. In Proceedings of the 2019 ACM Conference on International Computing Education Research ( p p . 2 1 9 - 2 2 7 ) . https://doi.org/10.1145/3291279.3339427.
  • De Vera, G. A., Brown, B. Y., Cortesa, S., Dai, M., Bruno, J., LaPier, J., & Wofsy, S. C. (2022). HazeL: A Low-Cost Learning Platform for Aerosol Measurements. Journal of Chemical Education , 9 9 ( 9 ) , 3 2 0 3 - 3 2 1 0 . https://doi.org/10.1021/acs.jchemed.2c00535.
  • Dewilde, A. H., & Li, Y. (2021). Using Arduinos to Transition a Bioinstrumentation Lab to Remote Learning. Biomedical engineering education , 1 ( 2 ) , 3 1 3 - 3 1 6 . https://doi.org/10.1007/s43683-020-00042-9.
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021a). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 2 8 5 - 2 9 6 . https://doi.org/10.1016/j.jbusres.2021.04.070.
  • Donthu, N., Kumar, S., Pandey, N., & Gupta, P. (2021b). Forty years of the International Journal of Information Management: A bibliometric analysis. International Journal of Information Management, 57, Article 102307. https://doi.org/10.1016/j.ijinfomgt.2020.1023 07.
  • Eck, N. J. Van, & Waltman, L. (2022). VOSviewer Manual 1.6.18. In VOSviewer Manual ( I s s u e v e r s i o n 1 . 6 . 1 8 ) . https://www.vosviewer.com/documentation/M anual_VOSviewer_1.6.18.pdf
  • Elayyan, S. (2021). The future of education according to the fourth industrial revolution. Journal of Educational Technology and Online Learning , 4 ( 1 ) , 2 3 - 3 0 . https://doi.org/10.31681/jetol.737193.
  • Eliasz, A. W. (2009, August). Not Just “Teaching Robotics” but “Teaching through Robotics”. In FIRA RoboWorld Congress (pp. 214-223). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03986- 7_25.
  • Elsevier. (2022). Scopus: Your Brilliance, Connected . [ Online ] . Avaliable : https://www.elsevier.com/__data/assets/pdf_file / 0 0 1 7 / 1 1 4 5 3 3 / S c o p u s - f a c t - s h e e t - 2022_WEB.pdf
  • Fages D. M., “Write better, publish better,” Scientometrics, vol. 122, pp. 1671-1681, 2020. [28] Felicia, A., Sha'rif, S., Wong, W. K., & Mariappan, M. (2017). Computational thinking and tinkering: Exploration study of primary school students' in robotic and graphical programming. Asian Journal of Assessment in Teaching and Learning , 7 , 44 – 54 . https://doi.org/10.37134/ajatel.vol7.5.2017.
  • Fidai, A., Capraro, M. M., & Capraro, R. M. (2020). “Scratch”-ing computational thinking with Arduino: A meta-analysis. Thinking Skills and creativity , 3 8 , 100726 . https://doi.org/10.1016/j.tsc.2020.10072
  • Guven, G., Kozcu Cakir, N., Sulun, Y., Cetin, G., & Guven, E. (2022). Arduino-assisted robotics coding applications integrated into the 5E learning model in science teaching. Journal of Research on Technology in Education, 54(1), 108 - 126 . https://doi.org/10.1080/15391523.2020.18121 36.
  • He, J., Lo, D. C. T., Xie, Y., & Lartigue, J. (2016, October). Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. In 2016 IEEE frontiers in education conference (FIE) (pp. 1-9). IEEE. https://doi.org/ 10.1109/FIE.2016.7757458.
  • Hsiao, H. S., Lin, Y. W., Lin, K. Y., Lin, C. Y., Chen, J. H., & Chen, J. C. (2019). Using robotbased practices to develop an activity that incorporated the 6E model to improve elementry school studentslearning performances. Interactive learning E n v i r o n m e n t s , 1 – 1 5 . htttps://doi.org/10.1080/10494820.2019.1636 090.
  • IEEE. Home. Retrieved November 28, 2022, from https://proceedingsoftheieee.ieee.org/
  • Ivanović, L., & Ho, Y. S. (2019). Highly cited articles in the education and educational research category in the social science citation Index: A bibliometric analysis. Educational R e v i e w , 7 1 ( 3 ) , 2 7 7 - 2 8 6 . https://doi.org/10.1080/00131911.2017.14152 97.
  • Janeera, D. A., Poovizhi, H., Haseena, S. S., & Nivetha, S. (2021, March). Smart embedded framework using arduino and IoT for real-time noise and air pollution monitoring and alert system. In 2021 International Conference on Artificial Intelligence and Smart Systems (I CAIS ) ( pp. 1416-1420) . IEEE. doi : 10.1109/ICAIS50930.2021.9396041.
  • Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014a). A crafts-oriented approach to computing in high school: Introducing computational concepts, practices, and perspectives with electronic textiles. ACM Transactions on Computing Education ( T O C E ) , 1 4 ( 1 ) , 1 - 2 0 . https://doi.org/10.1145/2576874.
  • Kafai, Y., Searle, K., Mrtinez, C., & Brayboy, B. (2014b, March). Ethnocomputing with electronic textiles: Culturally responsive open design to broaden participation in computing in American Indian youth and communities. In Proceedings of the 45th ACM technical symposium on Computer science education ( pp . 241 - 246 ) . https://doi.org/10.1145/2538862.2538903.
  • Kubínova,́ S., & Šleǵ r, J. (2015). ChemDuino: Adapting Arduino for low-cost chemical measurements in lecture and laboratory. https://doi.org/10.1021/ed5008102.
  • Küçükağa, Y., Facchin, A., Torri, C., & Kara, S. (2022). An original Arduino-controlled anaerobic bioreactor packed with biochar as a porous filter media. MethodsX, 9, 101615. https://doi.org/10.1016/j.mex.2021.101615.
  • Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364. https://doi.org/10.1016/j.cosrev.2021.100364.
  • Lee, M., Yun, J. J., Pyka, A., Won, D., Kodama, F., Schiuma, G., .& Zhao, X. (2018). How to respond to the fourth industrial revolution, or the second information technology revolution? D y n a m i c n e w c o m b i n a t i o n s b e t w e e n technology, market, and society through open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 4(3), 21. https://doi.org/10.3390/joitmc4030021.
  • Liu, Y., Vijay, A., Tommasini, S. M., & Wiznia, D. (2021). Hands-on engineering courses in the COVID-19 pandemic: adapting medical device design for remote learning. Physical and engineering sciences in medicine, 44(1), 195- 200. https://doi.org/10.1007/s13246-020- 00967-z.
  • López-Belmonte, J., Marín-Marín, J. A., Soler- Costa, R., & Moreno-Guerrero, A. J. (2020). Arduino advances in web of science. A Scientific mapping of literary production. IEEE Access, 8, 128674-128682. https://doi.org/ 10.1109/ACCESS.2020.3008572.
  • Loukatos, D., Androulidakis, N., Arvanitis, K. G., Peppas, K. P., & Chondrogiannis, E. (2022). Using Open Tools to Transform Retired Equi pment i nto Powe rful Engineering Education Instruments: A Smart AgriIoT Control Example. Electronics, 11(6), 855. https://doi.org/10.3390/electronics11060855.
  • Mariani, G., Umemoto, A., & Nomura, S. (2022). A home-made portable device based on Arduino Uno for pulsed magnetic resonance of NV centers in diamond. AIP Advances, 12(6), 065321. https://doi.org/10.1063/5.0089161.
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4- 200908180-00135.
  • Mongeon P. and Paul-Hus A., “The journal coverage of Web of Science and Scopus: A comparative analysis,” Scientometrics, vol. 106 , o . 1 , pp . 213 - 228 , 2016 . https://doi.org/10.1007/s11192-015-1765-5.
  • Nichols, D. (2017). Arduino-based data acquisition into Excel, LabVIEW, and MATLAB. The Physics Teacher, 55(4), 226- 227. https://doi.org/10.1119/1.4978720
  • Odusami, M., Misra, S., Abayomi-Alli, O., Olamilekan, S., & Moses, C. (2022). An Enhanced IoT-Based Array of Sensors for Monitoring Patients' Health. In Intelligent Internet of Things for Healthcare and Industry (pp. 105-125). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030- 81473-1_5.
  • Papadimitropoulos, N., Dalacosta, K., & Pavlatou, E. A. (2021). Teaching chemistry with Arduino experiments in a mixed virtualphysical learning environment. Journal of Science Education and Technology, 30(4), 550- 566. https://doi.org/10.1007/s10956-020- 09899-5.
  • Patterson M. and Harris S., “The relationship between reviewers' quality-scores and number of citations for papers published in the journal physics in medicine and biology from 2003- 2005,” Scientometrics, vol. 80, no. 2, pp. 343- 349, 2009. https://doi.org/ 10.1007/s11192- 008-2064-1.
  • Pantawane, R., Jyoti, A., Sheoran, S., Uikey, Y., Sonarkar, S . , & Thakre , R . ( 2 0 2 2 ) . Implementation of IoT-Based Health Care and Saline Monitoring System Using Arduino UNO. In Advanced Computing and Intelligent Technologies (pp. 513-526). Springer, Singapore. https://doi.org/10.1007/978-981-19- 2980-9_41.
  • P e ppl er, K . (20 13 ). S TEAM-p ow e re d computing education: Using e-textiles to integrate the arts and STEM. Computer, 46(09), 38-43. https://doi.org/ 10.1109/MC.2013.257. [54] Peppler, K., & Glosson, D. (2013). Stitching circuits: Learning about circuitry through etextile materials. Journal of Science Education a n d T e c h n o l o g y , 2 2 ( 5 ) , 7 5 1 - 7 6 3 . https://doi.org/10.1007/s10956-012-9428-2.
  • Plaza, P., Sancristobal, E., Carro, G., Blazquez, M., García-Loro, F., Martin, S., & Castro, M. (2018, December). Arduino as an educational tool to introduce robotics. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering ( T A L E ) ( p p . 1 - 8 ) . I E E E . https://doi.org/10.1109/TALE.2018.8615143.
  • Pratomo, A. B., & Perdana, R. S. (2017, November). Arduviz, a visual programming IDE for arduino. In 2017 International Conference on Data and Software Engineering ( ICo DSE ) ( pp . 1 - 6 ) . IEEE . doi : 10.1109/ICODSE.2017.8285871.
  • Price D. J., Little Science, Big Science, Columbia University Press, 1963. [58] Raju, M. P., & Laxmi, A. J. (2020). IOT based online load forecasting using machine learning algorithms. Procedia Computer Science, 171, 551 - 560 . https://doi.org/10.1016/j.procs.2020.04.059.
  • Revathy, N., Guhan, T., Nandhini, S., Ramadevi, S., & Dhipthi, R. (2022, January). IOT based Agriculture Monitoring System using Arduino UNO. In 2022 International Confer-ence on Computer Communication and Informatics (ICCCI) (pp. 01-05). IEEE. h t t p s : / / d o i . o r g / 10.1109/ICCCI54379.2022.9740910.
  • S´aez-Lopez, ´ J. M., Sevillano-García, M. L., & Vazquez-Cano, E. (2019). The effect of programming on primary school students' mathematical and scientific understanding: Educational use of mBot. Educational Technology Research and Development, 67(6), 1405–1425. https://doi.org/10.1007/s11423- 019-09648-5.
  • Saini, J., & Dutta, M. (2020). Applications of IoT in indoor air quality monitoring systems. In Internet of Things Use Cases for the Healthcare Industry (pp. 67-86). Springer, Cham. https://doi.org/10.1016/j.cosrev.2021.100364.
  • Salama, R. M., Idoko, J. B., Meck, K., Halimani, S. T., & Ozsahin, D. U. (2022). Design and implementation of a smart stick for visually impaired people. In Modern Practical Healthcare Issues in Biomedical Instrumentation (pp. 77-85). Academic Press. https://doi.org/10.1016/B978-0-323-85413- 9.00006-2
  • Scimago Journal & Country Rank. Search: Proceedings of the IEEE Retrieved November 28 , 2022 , from https://www.scimagojr.com/journalsearch.php ?q=17915&tip=sid
  • Scimago.Ranking. Retrieved November 28, 2022 , fr m https://www.scimagoir.com/rankings.php?sect or=Hiher%20educ.
  • Sudarmanto, A., Faqih, M. I., & Salim, N. (2022, March). Development of a dynamic fluid practicum tool (torricelli theory) based on Arduino uno with flow sensor and vibration sensor for high schools in grade 11. In AIP Conference Proceedings (Vol. 2391, No. 1, p. 0 6 0 0 0 3 ) . AIPPublishing LLC . https://doi.org/10.1063/5.0073119.
  • S anchez, J., & Canton, M. P. (2018). Microcontroller Programming: The Microchip PIC®. CRC press, ch.4.
  • Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental monitoring and assessment , 190( 9 ),1-16 . https://doi.org/10.1007/s10661-018-6914-x.
  • Sarik, J., & Kymissis, I. (2010, October). Lab kits using the Arduino prototyping platform. In 2010 IEEE Frontiers in Education Conference (FIE) (pp. T3C-1). IEEE. https://doi.org/ 10.1109/FIE.2010.5673417.
  • Soares, P. J., Oliveira, C., Morales, G., Arica, J., & Matias, I. (2019). State of the Art on Arduino and RFID. New Global Perspectives on Industrial Engineering and Management, 213- 220. https://doi.org/ 10.1007/978-3-319- 93488-4_24.
  • Teikari, P., Najjar, R. P., Malkki, H., Knoblauch, K., Dumortier, D., Gronfier, C., & Cooper, H. M. (2012). An inexpensive Arduino-based LED stimulator system for vision research. Journal of neuroscience methods, 211(2), 227-236. https://doi.org/10.1016/j.jneumeth.2012.09.01 2.
  • Tran, L. Q., Radcliffe, P. J., & Wang, L. (2022). A low budget take-home control engineering laboratory for undergraduate. The International Journal of Electrical Engineering & Education, 5 9 ( 2 ) , 1 5 8 - 1 7 5 . https://doi.org/10.1177/0020720919852784.
  • Trento, D., Trento, T. P. W., & Krüger, E. (2020). Application of Arduino-Based Systems as Monitoring Tools in Indoor Comfort Studies: A Bibliometric Analysis. International Journal of Architectural Engineering Technology, 7, 1- 1 2 . https : //doi .org/10 .15377/2409 - 9821.2020.07.1
  • Walkowiak, M., & Nehring, A. (2016). Using ChemDuino, Excel, and PowerPoint as tools for real-time measurement representation in class. https://doi.org/10.1021/acs.jchemed.5b00923.
  • West, R. E., Sansom, R., Nielson, J., Wright, G., Turley, R. S., Jensen, J., & Johnson, M. (2021). Ideas for supporting student-centered stem learning through remote labs: a response. Educational Technology Research and Development , 69( 1 ) , 263 - 268 . https://doi.org/10.1007/s11423-020-09905-y.
  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009- 0146-3.

Abstract Views: 106

PDF Views: 1




  • The Implementation of Arduino Microcontroller Boards in Science: A Bibliometric Analysis from 2008 to 2022

Abstract Views: 106  |  PDF Views: 1

Authors

Norbertus Krisnu Prabowo
Department of Chemistry Education, Universitas Negeri Jakarta, Jakarta 13220, Indonesia
Irwanto Irwan
Department of Chemistry Education, Universitas Negeri Jakarta, Jakarta 13220, Indonesia

Abstract


The name "Ardui no " made its international debut in 2005, marking the age of Arduino as one of the most user-friendly and costeffective microcontroller boards (MCBs) for novices. The science implementation of Arduino boards in automation, networking and data acquisition has been increasing steadily. This study provides a thorough Bibliometric analysis from 1122 papers focused on the Scopus database of published microcontroller research, from the first year the Arduino keyword appeared in 2008 until 2022. Various science articles indexed by Scopus and referring to the use of Arduino MCBs are selected. The Bibliometric analysis explores comprehensive and general key attributes that form a trend from the Scopus articles based on authors, titles, publication years, keywords, citations, affiliations, abstracts, funding information, and languages. The generated data is visualized and analyzed to find patterns that appear within the time span. This study found a significant increase in the number of articles on Arduino boards in Biology, Physics, Chemistry, Science, and STEM category of the paper. Despite using only the Scopus database, this study opens up to view the direction of the growing application of Arduino boards in Science. The use of Bibliometric analysis maps thebscientific implementation of Arduino boards as an extensive guide for future collaborations in education and industry.

Keywords


Arduino, Bibliometric, Microcontroller Boards, Science, Sensor, STEM.

References